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Recently, quantum error-correcting codes have been proposed that capitalize on the fact
that many physical error models lead to a significant asymmetry between the probabilities
for bit- and phase-flip errors. An example for a channel that exhibits such asymmetry is the
combined amplitude damping and dephasing channel, where the probabilities of bit and
phase flips can be related to relaxation and dephasing time, respectively. We study
asymmetric quantum codes that are obtained from the Calderbank–Shor–Steane (CSS)
construction. For such codes, we derive upper bounds on the code parameters using linear
programming. A central result of this paper is the explicit construction of some new
families of asymmetric quantum stabilizer codes from pairs of nested classical codes.
For instance, we derive asymmetric codes using a combination of Bose–Chaudhuri–
Hocquenghem (BCH) and finite geometry low-density parity-check (LDPC) codes. We
show that the asymmetric quantum codes offer two advantages, namely to allow a higher
rate without sacrificing performance when compared with symmetric codes and vice versa
to allow a higher performance when compared with symmetric codes of comparable rates.
Our approach is based on a CSS construction that combines BCH and finite geometry
LDPC codes.

Keywords: quantum codes; asymmetric quantum channels; stabilizer codes;
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1. Introduction

In many quantum mechanical systems, the mechanisms for the occurrence of bit-
and phase-flip errors are quite different. In a recent work, Ioffe & Mézard (2007)
postulated that quantum error correction should take into account this
asymmetry. The main argument given by Ioffe & Mézard (2007) is that most of
the known quantum computing devices have relaxation times (T1) that are
approximately one to two orders of magnitude larger than the corresponding
dephasing times (T2). In general, relaxation leads to both bit- and phase-flip errors,
whereas dephasing only leads to phase-flip errors. This large asymmetry between
T1 and T2 suggests that bit-flip errors occur less frequently than phase-flip errors
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and a well-designed quantum code would exploit this asymmetry of errors to
provide better performance. In fact, this observation and its consequences for
quantum error correction, especially quantum fault tolerance, has been studied by
several authors (Evans et al. 2007; Stephens et al. 2007; Aliferis & Preskill 2008).

Our goal is to construct quantum codes that exploit asymmetry. The focus of
the present paper is on quantum memory and communication; at present, we do
not consider the issue of fault tolerance. As a concrete illustration of this, we
consider the amplitude damping and dephasing channel. For this channel, we can
compute the probabilities of bit and phase flips in closed form. In particular, by
giving explicit expressions for the ratio of these probabilities in terms of the ratio
T1/T2, we show how the channel asymmetry arises.
(a ) Related work

Several recent papers discuss the situation of quantum error correction in
the presence of an asymmetric error model that gives a strong bias towards
certain errors.

Aliferis & Preskill (2008) gave a construction based on the concatenation of a
repetition code with any other quantum code to get asymmetric quantum codes
for biased noise. While this has the advantage that universal fault-tolerant
quantum computation is possible, we expect the codes constructed in this way to
have a lower rate than the ones constructed in the present paper. On the other
hand, it is not known whether the codes proposed in the present paper admit a
set of universal fault-tolerant gates that preserve the channel asymmetry. Evans
et al. (2007) used symmetric Calderbank–Shor–Steane (CSS) codes with
asymmetric error-correction strategy to obtain an advantage for fault-tolerant
quantum error correction over a symmetric strategy. The asymmetry in this case
comes from higher frequency of syndrome measurements for the X-only
generators as compared with the Z-only generators. Stephens et al. (2007) used
a combination of a symmetric code along with an asymmetric code to achieve
fault-tolerant computation. In this approach, one has to use fault-tolerant
circuits to switch between the symmetric and asymmetric encodings. This idea
may be applicable in the present context also, though further study is needed.
But we mention that our constructions include as special cases symmetric
stabilizer codes for which fault-tolerant universal computation is possible. Some
of them based on low-density parity-check (LDPC) codes are of independent
interest and can be useful even in the absence of an asymmetric channel.

The paper by Ioffe & Mézard (2007) is closest to our work regarding
the methods used to construct asymmetric quantum codes as both employ a
CSS construction having a classical LDPC code for the Z-errors and a classical
Bose–Chaudhuri–Hocquenghem (BCH) code for the X-errors. However, as we
show in §4b, we employ a different approach to construct the LDPC code that
allows us to have more control on the degree profile of the LDPC code. Arguably,
this gives an advantage regarding not only the structure of these codes but also
their performance, since similar to the classical case, our codes do not show an
error floor for very small probabilities of channel errors.

It should also be noted that the performance of symmetric quantum codes for
some specific quantum codes, such as a [[5, 1, 3]] or [[7, 1, 3]] code, over arbitrary
(not necessarily symmetric) Pauli channels has been studied by Rahn et al. (2002).
Proc. R. Soc. A (2009)
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However, contrary to the present paper in which the goal is to exploit channel
asymmetries for the code design, in this paper, the goal is to characterize the
performance of a given code under variation of the error weights and to find the
channel under which the given code has optimal performance. Finally, in a recent
development, Fletcher et al. (2008) studied adaptive quantum error-correction
strategies in which the optimal error-correction strategy is found for a given
channel using semi-definite programming. These techniques have been applied to
the case of asymmetric channels that arise from amplitude damping channels.
The amplitude damping model was first studied from the point of view of
quantum error correction by Leung et al. (1997), where an approximate quantum
code that encodes one qubit into four qubits was given. This code can also be
seen as an exact quantum error-correcting code for a certain choice of errors,
namely amplitude damping errors XCiY and bit-flip/phase damping errors Z
(B. Zeng 2008, personal communication). There is a physically arising
asymmetry between the error probabilities for these two types of errors; see
also appendix A for a derivation.
(b ) Organization of this paper

In §2, we provide the necessary background on quantum channels and give a
motivation for asymmetric quantum channels, i.e. noise models that show a
significant bias towards specific types of errors. We consider the concrete
example of the noise model given by amplitude damping and dephasing. This
serves as motivation of asymmetric channels and has the advantage that the
amount of asymmetry in the bit flip in phase-flip probabilities can be quantified
easily and can be related to physical quantities such as T1 and T2.

Next, in §3, we explain why our focus in this paper will be asymmetric
codes that are obtained from the CSS construction. After briefly sketching
the ideas of asymmetric codes, we derive some bounds on the parameters of
these codes. Similar to the case of standard quantum codes, which we will refer
to as symmetric quantum codes as they are not designed to exploit any bias
towards one specific error, it is possible to derive good upper bounds using
linear programming.

We then address the question of how to construct asymmetric quantum codes.
In §4, we show that, in general, a family of nested classical codes is well suited to
constructing such asymmetric quantum codes. We illustrate this for a few well-
known families of codes, namely Reed–Muller (RM) codes and BCH codes. Then,
we propose an alternative approach to Ioffe & Mézard (2007) and use a finite
geometry LDPC code and BCH code to construct an asymmetric stabilizer code.

The performance of asymmetric codes is the subject of §5. We simulate
the performance of several examples of asymmetric codes constructed by the
methods described in this paper in terms of the resulting block error rate versus
the probability of channel errors. Simulations are carried out for various choices
of channel asymmetries and codes. We explain why a modification of the
standard iterative decoding algorithms known from classical LDPC codes is
required as, in the quantum case, no (soft) channel information is available. We
present a suitable modification of the iterative decoding algorithm that starts
with information in the check nodes and then proceeds in a similar fashion to the
classical hard-decision bit-flipping algorithm.
Proc. R. Soc. A (2009)
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The present paper is an expanded version of Sarvepalli et al. (2008) and
contains some of the results presented therein.
2. Background on quantum error models

Recall that a quantum channel is a completely positive trace-preserving map
(Nielsen & Chuang 2000). Such maps can be written in Kraus operator form,
where the action of the channel on a given input state r is described as follows:
r1

P
iAirA

†
i , where the completeness relation

P
iA

†
i AiZ1 holds. The operators

Ai are the Kraus operators of the channel. A special case of a channel on one
qubit arises if the Kraus operators are simply given by the Pauli matrices, i.e. a
state r is mapped to

ð1K pxK pyK pzÞrCpxXrX CpyYrY CpzZrZ ; ð2:1Þ

with

1Z
1 0

0 1

" #
; X Z

0 1

1 0

" #
; Y Z

0 Ki

i 0

" #
; Z Z

1 0

0 K1

" #
: ð2:2Þ

Such a channel is called a Pauli channel. In a Pauli channel, one has independent
probabilities px, py , pz (subject to pxCpyCpz%1) that an input qubit in state r is
subjected to a Pauli X, Y or Z error, respectively.

As an example of a channel that arises in the study decoherence in concrete
physical systems, we consider the combined amplitude damping and dephasing
channel E. Important parameters for the noise process underlying this channel
are the relaxation time T1 and dephasing time T2. Suppose the channel E acts
on a single-qubit state rZ(rij)i, j2{0, 1} for a time t. This yields the resulting
density matrix

EðrÞZ
1K r11 e

Kt=T1 r01 e
Kt=T2

r10 e
Kt=T2 r11 e

Kt=T1

" #
:

We would like to determine the probability px, py and pz, such that an X-, Y- or
Z-error occurs in a combined amplitude damping and dephasing channel.
However, it turns out that this question is not well posed, since E is not a Pauli
channel, i.e. it cannot be written in the form (2.1). However, we can obtain a
Pauli channel ET by conjugating the channel E by Pauli matrices and averaging
over the results. The channel ET is called the Pauli twirl of E and is explicitly
given by

ETðrÞZ
1

4

X
A2f1;X ;Y ;Zg

A†EðArA†ÞA:

Twirling (DiVincenzo et al. 2002; Emerson et al. 2005; Dankert et al. 2006) is
used in quantum information theory as a tool to map quantum channels to
simpler ones, while preserving many interesting features of the initial channel.
Twirling has been used, for instance, for the task of estimating the average
fidelity of a quantum gate and for the task of determining more general features
Proc. R. Soc. A (2009)
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of channels (Emerson et al. 2007), as well as for the task of identifying codes for
general quantum channels (Silva et al. 2007). In our situation, we apply the Pauli
twirl to map the channel E to a Pauli channel.

Theorem 2.1. Given a combined amplitude damping and dephasing channel E
as above, the associated Pauli-twirled channel is of the form

ETðrÞZ ð1K pxK pyK pzÞrCpxXrX CpyYrY CpzZrZ ;

where pxZpyZð1KeKt=T1Þ=4 and pzZ1=2K pxKð1=2ÞeKt=T2 . In particular,

pz
px

Z 1C2
1Kexpðt=T1ð1KT1=T2ÞÞ

et=T1 K1
:

If t/T1, then we can approximate this ratio as 2T1/T2K1.

The proof of this theorem is straightforward but technical and is given in
appendix A. From theorem 2.1, it follows that an asymmetry in the T1 and T2

times does translate into an asymmetry in the occurrence of bit- and phase-
flip errors. Note that pxZpy, indicating that the Y-errors are as unlikely as the
X-errors. We shall refer to the ratio pz/px as the channel asymmetry and
throughout the paper shall denote it by A. Please note in some papers the
asymmetry is quantified in terms of the ratio (pzCpy)/(pxCpy).
3. Asymmetric quantum codes: basics and bounds

Asymmetric codes use the fact that the phase errors are much more likely than
the bit-flip errors or the combined bit–phase-flip errors. Therefore, the code has
different error-correcting capabilities for handling different types of errors. We
require the code to correct many phase errors but it is not required to handle the
same number of bit-flip errors. If we assume a CSS code, then we can
meaningfully speak of X- and Z-distances. A CSS stabilizer code that can detect
all X-errors up to weight dxK1 is said to have an X-distance of dx. Similarly, if
it can detect all Z-errors up to weight dzK1, then it is said to have a Z-distance
of dz. We shall denote such a code by [[n, k, dx/dz]]q to indicate it as an
asymmetric code. We could also view this code as an [[n, k, min{dx, dz}]]q
stabilizer code. Further extension of these metrics to an additive non-CSS code is
an interesting problem, but we will not go into the details here. We would like
to point out that Steane (1996) had earlier used a similar notation to distinguish
the two distances. He also suggested that efficient codes can be designed should
we be in possession of more information about the noise processes. Though the
notion of asymmetric non-binary quantum codes needs further treatment, the
idea of non-binary CSS is well understood. Some of the results are given for a
non-binary alphabet.

We will exclusively use the CSS construction (Steane 1996; Calderbank et al.
1998) to construct asymmetric quantum codes. Recall that in the CSS
construction a pair of codes are used, one for correcting the bit-flip errors and
the other for correcting the phase-flip errors. Our choice of these codes will be
such that the code for correcting the phase-flip errors has a larger distance than
the code for correcting the bit-flip errors. We restate the CSS construction in a
form convenient for asymmetric stabilizer codes.
Proc. R. Soc. A (2009)
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Lemma 3.1 (CSS construction, Steane (1996) and Calderbank et al.
(1998)). Let Cx, Cz be linear codes over F

n
q with the parameters [n, kx]q and

[n, kz]q, respectively. Let C
t
x 4Cz . Then, there exists an [[n, kxCkzKn, dx/dz]]q

asymmetric quantum code, where dxZwtðCx n Ct
z Þ and dzZwtðCz n Ct

x Þ.
If in the above construction dxZwt(Cx) and dzZwt(Cz), then we say that the

code is pure. In this context, we can give a bound for CSS-type pure asymmetric
stabilizer codes similar to the quantum Singleton bound.

Lemma 3.2. A pure asymmetric [[n, k, dx/dz]]q CSS code satisfies

k%nK dxK dz C2:

Proof. Assume that the asymmetric code is constructed using lemma 3.1, then
wt(Cx)Zdx and wt(Cz)Zdz. By the classical Singleton bound, jCx j%qnKd xC1 and
jCz j%qnKd zC1. Then, jCx j $ jCz jZqnCk%q2nKd xKd zC2. It follows k%nKdxKdzC2.

&

The bound in lemma 3.2 can be extended for all Fq-linear asymmetric CSS-
type codes.

Lemma 3.3. Any CSS-type Fq-linear [[n, k, dx/dz]]q CSS-type code satisfies

k%nK dxK dz C2: ð3:1Þ

Proof. Let us assume that the asymmetric CSS code was constructed using
lemma 3.1. Let Cc

x be the complement of Ct
z in Cx, i.e. a subcode of Cx, such that

the span of Cc
x and Ct

z is Cx. Similarly, let Cc
z be the complement of Ct

x in Cz.
Let dim Ct

x Zka and dim Ct
z Zkb. We have jCt

x j $ jCt
z jZqnKkZqkaCkb . Now,

the Fq linearity of the stabilizer code implies that we can choose Cc
x to be all zeros

in kb columns, because we can perform Gaussian elimination using Ct
z to get rid

of the non-zero elements in kb columns. In effect, Cc
x is a code of length nKkb.

Now the classical Singleton bound implies that jCc
x j%qðnKkbÞKdxC1. The

minimum distance of Cc
x must be at least dx because it is a subcode of Cx n

Ct
z and we know that dxZwtðCx n Ct

z Þ. Similarly, we can show that
jCc

z j%qðnKkaÞKdzC1, where dzZwtðCz n Ct
x Þ. It follows that

jCc
x j $ jCc

z j%qnKkbKdxC1qnKkaKdzC1 Z q2nKkaKkbKdxKdzC2:

But jCt
x j $ jCt

z jZqnKkZqkaCkb , therefore

jCc
x j $ jCc

z j%q2nKkaKkbKdxKdzC2 Z qnCkKdxKdzC2:

Now using the fact that jCc
x j $ jCc

z jZq2k, we have qk%qnKdxKdzC2, i.e.
k%nKdxKdzC2. &

This bound seems to imply that if there was an asymmetry in the channel,
then using asymmetric quantum codes we could potentially gain in rate. It would
be interesting to extend this bound to all asymmetric stabilizer codes linear or
otherwise. The (quantum) Singleton bound, in general, is not very tight,
especially for large lengths. In this context, the linear programming bounds turn
out to be more useful. We shall derive some linear programming bounds for CSS-
type asymmetric stabilizer codes.
Proc. R. Soc. A (2009)
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Theorem 3.4 (Linear programming bounds). If an [[n, k, dx/dz]]2 asymmetric
CSS stabilizer code with kO0 exists, then there exists a solution to the
optimization problem: maximize

PdzK1
jZ1 Aj subject to the constraints

ðiÞ A0 ZAt
0 ZB0 ZBt

0 Z 1 and Aj ;A
t
j ;Bj ;B

t
j R0; for all 1% j%n;

ðiiÞ 0!k 0!nKk;

ðiiiÞ
Xn
jZ0

Aj Z 2k
0
;

ðivÞ
Xn
jZ0

Bj Z 2nKkKk 0 ;

ðvÞ At
j Z

1

2k
0

Xn
rZ0

KjðrÞAr ; for all j in the range 0% j%n;

ðviÞ Bt
j Z

1

2nKkKk 0

Xn
rZ0

KjðrÞBr ; for all j in the range 0% j%n;

ðviiÞ Aj ZBt
j ; for all j in 0% j!dx and Aj%Bt

j ; for all dx% j%n; and

ðviiiÞ Bj ZAt
j ; for all j in 0% j!dz and Bj%At

j ; for all dz% j%n;

where the coefficients Aj, A
t
j , Bj and Bt

j are integrals and Kj(r) denotes the
Krawtchouk polynomial

KjðrÞZ
Xj
sZ0

ðK1Þs
r

s

� �
nKr

jKs

 !
: ð3:2Þ

Proof. If an [[n,k,dx/dz]]2 asymmetric stabilizer code exists, then by lemma 3.1,
there exists classical codes Ct

x 4Cz4F
n
2 . Let the weight distributions of C

t
z and

Ct
x be given by Ai and Bi , respectively, where 0%i%n. If we let jCt

z jZ2k
0
,

then this means
P

AiZ2k
0
and since jCt

x j $ jCt
z jZ2nKk, it follows thatP

BiZ2nKkKk 0 . We restrict the range of 0!k 0!nKk to ensure that dx, dzO1.
The weight distributions of Cx and Cz are given by the MacWilliams duality
relations (MacWilliams & Sloane 1977). These give us

At
j Z

1

2k
0

Xn
rZ0

KjðrÞAr ð3:3Þ

and

Bt
j Z

1

2nCkKk 0

Xn
rZ0

KjðrÞBr : ð3:4Þ
Proc. R. Soc. A (2009)
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Since Ct
z 4Cx and Ct

x 4Cz , we must have Aj%Bt
j and Bj%At

j , for 0%j%n.
As the quantum code hasX-distance dx, all vectors of weight less than dx inCx must
be in Ct

z , giving us AjZBt
j , for 1%j%dxK1. Similarly, all vectors of weight

less than dz in Cz must be in Ct
x and we get BjZAt

j , for 1%j%dzK1. &

In order to implement the above constraints as a linear programming problem,
we must fix the value of k 0. Then, the above constraints reduce to nKkK1
instances of a linear programming problem. An [[n, k, dx/dz]] code will not exist if
none of the instances have a solution. It is possible that the code might not exist
even if some instance has a solution.

Using the linear programming bounds, we were able to show that there can
exist a [[15, 1, 3/7]] code. This code can be constructed using two BCH codes.
Further details about this code are given in §5. Note that there does not exist a
[[15, 1, 7]] stabilizer code.

One of the referees pointed out that a [[13, 1, 3/5]] exists. We were, however,
unable to construct a smaller code, even though the linear programming bounds
indicate that a [[12, 1, 3/5]] may exist. Our interest in these small codes is due to
the fact that small codes are easier to analyse and study, and might perhaps
provide insight into asymmetric quantum error correction. It would be an
interesting problem to show its existence or non-existence.
4. Asymmetric quantum codes: constructions

(a ) Construction from families of nested codes

Our first construction makes use of RM codes (for an introduction see Huffman &
Pless 2003, pp. 33–36). Recall that a RM code of order r and length 2m has
the parameters

2m;
Xr
jZ0

m

j

 !
; 2mKr

" #
:

Let us denote an rth order RM code as Rðr;mÞ. RM codes have the following
interesting properties of relevance for us:

(i) Rðr;mÞtZRðmK1Kr ;mÞ and
(ii) Rðr1;mÞ4Rðr2;mÞ if r1%r2.

We shall call a family of codes that satisfy a property as (ii) with respect to
some code parameter nested codes. The BCH codes are also a family of nested
codes. As a first example, we construct asymmetric quantum codes based on the
nested family of RM codes. The resulting codes are not new, they have been
already constructed by Steane (1999b); in fact, the use of RM codes for quantum
error correction was suggested earlier by Knill et al. (1996).

Lemma 4.1 (Asymmetric RM stabilizer codes). Let 0%r1!r2!m. Then, there
exists an

2m;
Xr2

jZr1C1

m

j

 !
; 2mKr2=2r1C1

" #" #
2

asymmetric RM stabilizer code.
Proc. R. Soc. A (2009)

http://rspa.royalsocietypublishing.org/


1653Asymmetric quantum codes

 on October 31, 2016http://rspa.royalsocietypublishing.org/Downloaded from 
Proof. Let CxZRðr2;mÞ and CzZRðmK1K r1;mÞZRðr1;mÞt. Then, the
code follows from the application of lemma 3.1. Note that the dimension of the
quantum code is

kx CkzKn Z kxKdim Ct
z Z

Xr2
jZ0

m

j

 !
K
Xr1
jZ0

m

j

 !
Z

Xr2
jZr1C1

m

j

 !
;

where the last equality follows from the fact r1!r2. With respect to the
distance, we have dxZwtðCx n Ct

z ÞZwtðRðr2;mÞ n Rðr1;mÞÞZ2mKr2 , because
the wtðRðr1;mÞÞZ2mKr1O2mKr2ZwtðRðr2;mÞÞ. Similarly, dzZwtðCz n Ct

x ÞZ
wtðRðmK1K r1;mÞ n RðmK1K r2;mÞÞZ2r1C1. &

These codes illustrate the trade-offs involved in the design of asymmetric
stabilizer codes. In order to have large asymmetry in the distance, we need dx/dz
to be very small. In this case, we need 2r1Cr2C1Km large. In order to get a large
rate, we will require that the difference between r2Kr1 is also large.

Lemma 4.2 (Rate gain for asymmetric RM stabilizer codes). Let
0%Dr%r%bðmK1Þ=2c, then there exists an

2m;
XmK1Kr

jZrC1

m

j

 !
; 2rC1

" #" #
2

code which can be turned into an

2m;
XmK1Kr

jZrC1

m

j

 !
CDk; 2rC1KDr=2rC1

" #" #
2

asymmetric code, where

Dk Z
XmK1KrCDr

mKr

m

j

 !
:

Proof. Under the conditions on r, we can choose CxZCzZRðmK1Kr ;mÞ
and apply lemma 3.1, then the stabilizer code follows. If we choose
CxZRðmK1KrCDr ;mÞ, then we can convert the stabilizer code into the
asymmetric stabilizer code with the given parameters. &

The preceding result indicates that asymmetry can be exploited to get higher
rates compared with a symmetric stabilizer code.

Example 4.3. In table 1, we show the gains in rate as one allows for more and
more asymmetry.

We denote a q-ary narrow-sense BCH code of length n and design distance d
by BCHqðd; nÞ. We drop n in the notation if the code is primitive, i.e. nZqmK1,
where mZordn(q) is the multiplicative order of q modulo n. For binary codes, we
suppress q also for convenience. If d%2dm/2eK1, we can compute the dimension of
the BCH code exactly as 2mK1Kmt (see MacWilliams & Sloane 1977, p. 263).1

In the following, we assume that the design distances of binary BCH codes
are odd.
1Actually, this relation holds for d%2dm/2eC3. But this suffices for our purposes.

Proc. R. Soc. A (2009)
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Table 1. Asymmetric quantum codes constructed from the nested codes construction applied to
RM stabilizer codes.

r
symmetric code
[[n, k, d ]]2

asymmetric code [[n, k, dx/dz]]2

Dr 0 1 2 3

4 [[1024, 252, 32]]2 [[1024, 462, 16/32]]2 [[1024, 582, 8/32]]2 [[1024, 627, 4/32]]2
3 [[1024, 672, 16]]2 [[1024, 792, 8/16]]2 [[1024, 837, 4/16]]2 [[1024, 847, 2/16]]2
2 [[1024, 912, 8]]2 [[1024, 957, 4/8]]2 [[1024, 967, 2/8]]2
1 [[1024, 1002, 4]]2 [[1024, 1012, 2/4]]2
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Lemma 4.4 (Asymmetric BCH stabilizer codes). Let mR2 and 2%d1!d2!
dmax, where dmaxZ2dm/2eK1 and dih1 mod 2. Then, there exists an

½½2m K1;mðd2K d1Þ=2; dx=dz ��2
asymmetric BCH stabilizer code, where dxRd1 and dzRdmaxC1.

Proof. In this case, we choose CxZBCHðd1Þ and CzZBCHðd2Þt. Under the
restrictions on d1 and d2, we can compute the dimension of the BCH codes
explicitly. The dimension of (d)t is given by m(dK1)/2, assuming odd d.
By lemma 3.1, we can then compute the dimension of the quantum code as
m(d2K1)/2Km(d1K1)/2Zm(d2Kd1)/2.

We have dxRwtðBCHðd1Þ n BCHðd2ÞÞRd1 and dzRwtðBCHðd2Þt n BCH
ðd1ÞtÞRdmax. The last inequality follows from the fact that the distance of
(d2)

t code is at least dmaxC1, as shown by lemma 10 of Aly et al. (2007). &

Example 4.5. Suppose we let mZ10 and vary d1 and d2. Some of the codes that
can be constructed are given in table 2.

Alternatively, we could consider dual containing BCH codes to construct
stabilizer codes. In this case, it is easier to see that the gain in rate is proportional
to the loss in the distance for the bit-flip channel.

Lemma 4.6. Let nZ2mK1, dmaxZ2dm/2eK1 and dZ2tC1%dmax. Then,
there exists an [[n, nKm(dK1), Rd]]2 stabilizer code that can be converted
to an [[n, nKm(dK1)CmD/2, dx/dz]]2 asymmetric stabilizer code, where
0%DZ2l%dK2 and dxRdKD and dzRd.

Proof. Under the restrictions on d, we have BCH(d)t4BCH(d) (see lemma 1
of Steane 1999a). Then, the stabilizer code is obtained by choosingCxZCzZBCH(d)
in lemma 3.1. If Cx is chosen to be BCH(dKD), then we get the asymmetric
stabilizer code. &

These results seem to indicate, once again, that asymmetry, in general, can
lead to a rate gain. In the case of the BCH stabilizer codes constructed above, it
appears that the rate gain is linearly proportional to the reduction in the distance
of the code used for correcting bit-flip errors.

In general, any family of nested codes can lead to a class of asymmetric
stabilizer codes. The main obstacle to such a method is usually the knowledge of
the dual distances, a knowledge of which is required to determine the error-
correcting capability of the quantum code. However, algebraic codes have this
Proc. R. Soc. A (2009)
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Table 2. Asymmetric quantum codes constructed from the nested codes construction applied to
BCH stabilizer codes.

d1 d2 code [[n, k, dx/dz]]2 rate k/n asymmetry dz/dx

29 31 [[1023, 10, 29/32]]2 0.00978 z1
17 31 [[1023, 70, 17/32]]2 0.06843
15 31 [[1023, 80, 15/32]]2 0.07820 z2
13 31 [[1023, 90, 13/32]]2 0.08798
11 31 [[1023, 100, 11/32]]2 0.09775 z3
9 31 [[1023, 110, 9/32]]2 0.10753
7 31 [[1023, 120, 7/32]]2 0.11730 z4
5 31 [[1023, 130, 5/32]]2 0.12708 z6
3 31 [[1023, 140, 3/32]]2 0.13685 z10
27 29 [[1023, 10, 27/32]]2 0.00978 z1
15 29 [[1023, 60, 15/32]]2 0.05865 z2
9 29 [[1023, 100, 9/32]]2 0.09775 z3
7 29 [[1023, 110, 7/32]]2 0.10753 z4
5 29 [[1023, 120, 5/32]]2 0.11730 z6
3 29 [[1023, 130, 3/32]]2 0.12708 z10
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nice structure of being nested, and within certain ranges it is also possible to lower
bound the distances including the dual distances. So, while we cannot claim a truly
asymmetric code because of our lack of knowledge of these distances, we can
certainly form a class of codes quite suitable for the asymmetric channels.
(b ) Construction from dual pairs of LDPC and BCH codes

Nested codes are not the only method to construct asymmetric codes. Ioffe &
Mézard (2007) used a combination of BCH and LDPC codes to construct
asymmetric codes. The intuition being that the stronger LDPC code should be
used for correcting the phase errors and the BCH code can be used for the
infrequent bit flips. This essentially reduces to finding a good LDPC code such
that the dual of the LDPC code is contained in the BCH code. They solve this
problem by randomly choosing code words in the BCH code which are of low
weight (so that they can be used for the parity-check matrix of the LDPC code).
However, their method is a little ad hoc and it is not clear how good is the
resulting LDPC code. For instance, the degree profiles of the resulting code are
irregular and there is little control over the final degree profiles of the code. It
was claimed by Ioffe & Mézard (2007) that their codes can be analysed using the
traditional methods of analysis for the LDPC codes. But there are many
questions that must be answered before it can be fully justified. For instance, it
is not apparent what ensemble or degree profiles one will use for performing
this analysis.

We consider using LDPC codes to construct asymmetric stabilizer codes. Part
of the reason being that these codes are among the best classical codes with
efficient decoding algorithms. It should be noted that several classes of quantum
LDPC codes have been proposed (MacKay et al. 2004; Camara et al. 2007;
Hagiwara & Imai 2007). So far, however, the structure of quantum LDPC codes
Proc. R. Soc. A (2009)
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in general, including their decoding algorithms, is not well understood. For some
time it was even doubtful whether quantum LDPC codes exist at all, since a
simple observation shows, for instance, that quantum LDPC codes constructed
as stabilizer codes must necessarily have four cycles in their Tanner graph, but
see the work of Hagiwara & Imai (2007) for an interesting work around. To
circumvent this problem, we are interested in families of quantum LDPC codes
which have the property to tolerate large numbers of four cycles without affecting
the performance of the decoding algorithm too adversely.

More precisely, we propose two families of quantum codes based on LDPC
codes. In the first case, we use LDPC codes for both the X- and Z-channels. We
will need the following facts about generalized RM codes and finite geometry
LDPC codes.
(i) Some facts about finite geometry LDPC codes

In this section, we will briefly review finite geometry LDPC codes (Kou et al.
2001; Tang et al. 2005). Let us denote by EG(m, ps) the Euclidean finite
geometry over Fps consisting of pms points. For our purposes, it only suffices
to use the fact that this geometry is equivalent to the vector space F

m
ps .

A m-dimensional subspace of Fmps or its coset is called a m-flat. We can describe a
m-flat by the following equation:

a0 Cl1a1 Cl2a2 C/Clmam; li 2Fps ; ð4:1Þ

where the ai 2F
m
ps are linearly independent. The 0-flats and 1-flats are the

familiar points and lines. Assume that 0%m1!m2%m. Then, we denote by
NEG(m2, m1, s, p) the number of m1-flats in a m2-flat and by AEG(m, m2, m1, s, p),
the number of m2-flats that contain a given m1-flat. These are given by (see Tang
et al. 2005)

NEGðm2;m1; s; pÞZ qðm 2Km1Þ
Ym1

iZ1

qm2KiC1K1

qm1KiC1K1
ð4:2Þ

and

AEGðm;m2;m1; s; pÞZ
Ym2

iZm1C1

qmKiC1K1

qm2KiC1K1
; ð4:3Þ

where qZps. Index all the m1-flats from iZ1 to nZNEG(m, m1, s, p) as Fi. Let F
be a m2-flat in EG(m, ps). Then, we can associate an incidence vector to F with
respect to the m1 flats as follows:

IF Z ij
ij Z 1; if Fj is contained in F;

ij Z 0; otherwise:

�����
)(

Index the m2-flats from jZ1 to JZNEG(m, m2, s, p). Construct the J!n matrix
H

ð1Þ
EGðm;m2;m1; s; pÞ, whose rows are the incidence vectors of all the m2-flats

with respect to the m1-flats. This matrix is also referred to as the incidence
matrix. Then, the type-I Euclidean geometry code from m2- and m1-flats is
defined to be the null space (i.e. the Euclidean dual) of the Fp-linear span
Proc. R. Soc. A (2009)

http://rspa.royalsocietypublishing.org/


1657Asymmetric quantum codes

 on October 31, 2016http://rspa.royalsocietypublishing.org/Downloaded from 
of H
ð1Þ
EGðm;m2;m1; s; pÞ. This is denoted as C

ð1Þ
EGðm;m2;m1; s; pÞ. Let H

ð2Þ
EGðm;m2;

m1; s; pÞZH
ð1Þ
EGðm;m2;m1; s; pÞt. Then, the type-II Euclidean geometry code

C
ð2Þ
EGðm;m2;m1; s; pÞ is defined to be the null space of H

ð2Þ
EGðm;m2;m1; s; pÞ.

Let us now consider the m2- and m1-flats that do not contain the origin of
EG(m, ps). Now form the incidence matrix of the m2-flats with respect to the
m1-flats not containing the origin. The null space of this incidence matrix gives us
a quasi-cyclic code in general, which we denote by C

ð1Þ
EG;cðm;m2;m1; s; pÞ.
(ii) Some facts about the generalized Reed–Muller codes

Before we proceed further, we recall some salient facts about the generalized
RM codes (Kasami et al. 1968a). Let a be a primitive element in Fqm . The cyclic
generalized RM code of length qmK1 and order n is defined as the cyclic code
with the generator polynomial, whose roots aj satisfy 0!j%m(qK1)KnK1. The
generalized RM code is the singly extended code of length qm. It is denoted as
GRMq(n, m). The dual of a GRM code is also a GRM code (Kasami et al. 1968a;
Assmus & Key 1998; Blahut 2003). It is known that

GRMqðn;mÞt ZGRMqðnt;mÞ; with nt ZmðqK1ÞK1Kn: ð4:4Þ

Let C be a linear code over Fnqs . Then, we define C j Fq , the subfield subcode of C
over F

n
q as the code words of C, which are entirely in F

n
q (see Huffman & Pless

2003, pp. 116–120). Formally, this can be expressed as

C j Fq Z fc2C j c2F
n
qg: ð4:5Þ

Let C4F
n
ql
. Then, the trace code of C over Fq is defined as

trql=qðCÞZ ftrql=qðcÞ j c2Cg; ð4:6Þ
where trql=qðxÞZ

PlK1
iZ0 x

qi . There are interesting relationships between the trace
code and the subfield subcode. One of which is the following result, which we will
need later.

Lemma 4.7. Let C4F
n
ql
. Then C j Fq , the subfield subcode of C is contained in

trql=qðCÞ, the trace code of C. In other words,

C j Fq 4trql=qðCÞ:
Proof. Let c2C j Fq 4F

n
q and a2Fql . Then, trql=qðacÞZc trql=qðaÞ as c2F

n
q .

Since trace is a surjective form, there exists some a2Fql , such that trql=qðaÞZ1.
This implies that c2 trql=qðCÞ. Since c is an arbitrary element in C j Fq , it follows
that C j Fq 4trql=qðCÞ. &

The other relation due to Delsarte is the following.

Lemma 4.8 (Delsarte 1975). Let C4F
n
ql
. Then,

C jtFq Z trql=qðCtÞ:
Let qZps, then the Euclidean geometry code of order r over EG(m,ps) is

defined as the dual of the subfield subcode of GRMq((qK1)(mKrK1),m) (Blahut
2003, p. 448). The type-I LDPC code of C

ð1Þ
EGðm;m; 0; s; pÞ code is an Euclidean

geometry code of order mK1 over EG(m, ps) (see Tang et al. 2005). Hence, its
dual is the subfield subcode of GRMq((qK1)(mKm),m) code. In other words,
Proc. R. Soc. A (2009)
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C
ð1Þ
EGðm;m; 0; s; pÞt ZGRMqððqK1ÞðmKmÞ;mÞ j Fp : ð4:7Þ

Furthermore, Delsarte’s result (lemma 4.8) states that

GRMqððqK1ÞðmKmÞ;mÞ jtFp Z trq=pðGRMqððqK1ÞðmKmÞ;mÞtÞ
Z trq=pðGRMqðmðqK1ÞK1;mÞÞ:

Hence, C
ð1Þ
EGðm;m; 0; s; pÞ code can also be related to GRMqðmðqK1ÞK1;mÞ as

C
ð1Þ
EGðm;m; 0; s; pÞZ trq=pðGRMqðmðqK1ÞK1Þ;mÞ: ð4:8Þ

In theorem 4.9, we use all these facts together to construct a family of
asymmetric stabilizer LDPC codes.

Theorem 4.9 (Asymmetric EG LDPC codes). Let p be a prime, with qZps and
sR1, mR2. Let 1!mz!m and mKmzC1%mx!m. Then, there exists an

½½pms; kx CkzKpms; dx=dz ��p
asymmetric EG LDPC code, where

kx Z dim C
ð1Þ
EGðm;mx ; 0; s; pÞ and kz Zdim C

ð1Þ
EGðm;mz ; 0; s; pÞ;
Proc. R.
dxRAEG(m, mx, mxK1, s, p)C1 and dzRAEG(m, mz, mzK1, s, p)C1.
Proof. Let us choose CzZC
ð1Þ
EGðm;mz ; 0; s; pÞ. Then, from equation (4.8)

we have
Cz Z trq=pðGRMqðmzðqK1ÞK1Þ;mÞ:

By lemma 4.7, we know that

trq=pðGRMqðmzðqK1ÞK1Þ;mÞJ GRMqðmzðqK1ÞK1;mÞ j Fp

CzJ GRMqððqK1ÞðmKðmKmz C1ÞÞ;mÞ j Fp ;

where the last inclusion follows from the nesting property of the generalized RM

codes. For any order mx such that mKmzC1%mx!m, let CxZC
ð1Þ
EGðm;mx ; 0; s; pÞ.

Then Cx is an LDPC code whose dual Ct
x ZGRMqððqK1ÞðmKmxÞ;mÞ j Fp is

contained in Cz. Thus, we can use lemma 3.1 to form an asymmetric code with
the parameters

½½pms; kx CkzKpms; dx=dz ��p:

The distance of Cz and Cx are lower bounded as dxRAEG(m,mx,mxK1,s,p)C1 and
dzRAEG(m, mz, mzK1, s, p)C1 (see Tang et al. 2005). &

In the construction just proposed, we should choose Cx to be a larger code
compared with Cz, so that Cz is a stronger code. We have the construction over a
non-binary alphabet, although in the context of asymmetric quantum codes, one
might be more interested in the case pZ2.

We briefly turn our attention back to the (symmetric) depolarizing channel. It
turns out that the presented LDPC codes, which are designed for asymmetric
channels, will, in general, not perform equally well on the depolarizing channel.
In fact, constructing good quantum LDPC codes for the depolarizing channel
Soc. A (2009)
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remains a difficult problem and a satisfactory solution is yet to be advanced.
However, we point out in corollary 4.10 to theorem 4.9 that, under certain
conditions on the rate of the desired code, it is possible to construct quantum
LDPC codes also for the symmetric depolarizing channel.

Corollary 4.10 (EG LDPC codes for depolarizing channel). Let p be a prime,
with qZps and sR1, mR2. Let d(mC1)/2e%m!m. Then, there exists an
[[pms, 2kKpms, d ]]p symmetric EG LDPC code, where kZdim C

ð1Þ
EGðm;m; 0; s; pÞ.

For the distance, dRAEG(m, m, mK1, s, p)C1 holds.

Our next construction is an alternative to the method proposed by Ioffe &
Mézard (2007). Now we shall make use of the cyclic finite geometry codes. Our
goal will be to find a BCH code whose dual is contained in a cyclic Euclidean
geometry LDPC code. First, we need the notion of q-ary weight. Let 0%h!qm,
then we define

WqðhÞZ
X

hi; where h Z h0 Ch1qC/ChmK1q
ðmK1Þ: ð4:9Þ

If hRqm, then we compute Wq(h) as the weight of h mod qmK1.

Theorem 4.11 (Asymmetric BCH–LDPC stabilizer codes). Let C be the code
C

ð1Þ
EG;cðm;m; 0; s; pÞ and d%d0ZpmsK1. Then, there exists an

½½pms K1; kx CkyKn; dx=dz ��p
asymmetric stabilizer code, where dzRAEG(m, m, mK1, s, p) and dxRd.

Proof. For proving this theorem, we need the cyclic structure of
C

ð1Þ
EG;cðm;m; 0; s; pÞ. Let a be a primitive element in Fpms . Then, the roots of

generator polynomial of C
ð1Þ
EG;cðm;m; 0; s; pÞ are given by Kasami & Lin (1971,

theorem 6), see also Kasami et al. (1968b) and Lin & Costello (2004),

Z Z ah j 0! max
0%l!s

WpsðhplÞ%ðpsK1ÞðmKmÞ
� �

;

where Wq(h) is as defined in equation (4.9). The code C
ð1Þ
EG;cðm;m; 0; s; pÞ

is actually an (mK1,ps) Euclidean geometry code. The roots of the generator
polynomial of the dual code are given by

Zt Z ah j min
0%l!s

WpsðhplÞ!mðps K1Þ
� �

:

In fact, the dual code is the even-like subcode of a primitive polynomial code of
length pmsK1 over Fp and order mKm. By Kasami et al. (1968b, theorem 6),
the generator polynomial of the polynomial code has the roots

Zp Z ah j 0! min
0%l!s

WpsðhplÞ!mðpsK1Þ
� �

:

Thus, ZtZZpg{0}. Now by Kasami & Lin (1971, theorem 6), Zp and therefore
Zt contain the sequence of consecutive roots, a, a2,., ad0K1, where

d0 Z ðRC1ÞpQs K1 and mðpsK1ÞKðmKmÞðps K1ÞZQðps K1ÞCR:
Proc. R. Soc. A (2009)
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Simplifying, we see that RZ0 and QZm giving d0ZpmsK1. It follows that

C
ð1Þ
EG;cðm;m; 0; s; pÞt ZGRMqððqK1ÞðmKmÞ;mÞ j Fp 4BCHðd0Þ:

Thus, we have solved the problem of construction of the asymmetric stabilizer
codes in dual fashion to that of Ioffe & Mézard (2007). Instead of finding an
LDPC code whose parity-check matrix is contained in a given BCH code, we
have found a BCH code whose parity-check matrix is contained in a given finite
geometry LDPC code. Choosing any BCH code whose design distance is less than
pmsK1 gives a BCH code, which contains the dual of the finite geometry LDPC

code C
ð1Þ
EG;cðm;m; 0; s; pÞ. Thus, we can apply lemma 3.1 to obtain the code stated

in the statement of the theorem. &

In what follows, we give a small example to illustrate this construction.

Example 4.12. Let mZsZpZ2 and mZ1. Then, C
ð1Þ
EG;cð2; 1; 0; 2; 2Þ is a cyclic

code whose generator polynomial has roots given by

Z Z fah j 0!max
0%l!2

W22ð2lhÞ%ðmKmÞðpsK1ÞZ ð2K1Þð22K1Þg

Z fa1;a2;a3;a4;a6;a8;a9;a12g:

As there are four consecutive roots and jZ jZ8, it defines a [15, 7,R5] code. The
roots of the generator polynomial of the dual code are given by

ZtZ fah j 0! min
0%l!2

W22ð2lhÞ%mðps K1ÞZ ð22K1Þg

Z fa0;a1;a2;a4;a5;a8;a10g:
We see that Zt has two consecutive roots excluding 1; therefore, the dual
code is contained in a narrow-sense BCH code with design distance 3. Note that
pmsK1Z3. Thus, we can choose CxZBCH(3) and CzZC

ð1Þ
EG;cð2; 1; 0; 2; 2Þ and

apply lemma 3.1 to construct a [[15, 3, 3/5]]2 asymmetric code.

We can also state the above construction in a dual fashion, i.e. given a
primitive BCH code of design distance d, find an EG LDPC code whose dual is
contained in it. It must be pointed out that in the case of asymmetric codes
derived from LDPC codes, the asymmetry factor dx/dz is not as indicative of the
code performance as in the case of bounded distance decoders. For mZpZ2, we
can derive explicit relations for the parameters of the codes.

Corollary 4.13. Let CZC
ð1Þ
EG;cð2; 1; 0; s; 2Þ and dZ2tC1%2sK1. Then, there

exists an

½½22s K1; 22sK3sKsðdK1Þ; d=2s C1��2
asymmetric stabilizer code.

Proof. The parameters of C are [22sK1,22sK3s,2sC1]2 (see Lin & Costello
2004). Since Ct is contained in a BCH code of length 22sK1 whose design
distance d%2sK1,wecan compute thedimensionof theBCHcodeas 22sK1Ks(dK1)
(see MacWilliams & Sloane 1977, corollary 8). By lemma 3.1, the quantum code
has the dimension 22sK3sKs(dK1). &
Proc. R. Soc. A (2009)
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Table 3. Asymmetric quantum codes constructed from the construction based on pairs of LDPC
and BCH codes.

s d code [[n, k, dx/dz]]2 asymmetry dz/dx rate

4 15 [[255, 119, 15/17]]2 z1 0.467
4 13 [[255, 127, 13/17]]2 z1.25 0.498
4 11 [[255, 135, 11/17]]2 z1.5 0.529
4 9 [[255, 143, 9/17]]2 z2 0.561
4 7 [[255, 151, 7/17]]2 z2.5 0.592
4 5 [[255, 159, 5/17]]2 z3 0.624
4 3 [[255, 167, 3/17]]2 z6 0.655
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Example 4.14. For mZpZ2 and sZ4, we can obtain a [255, 175, 17] LDPC
code. We can choose any BCH code with design distance d%24K1Z15 to
construct an asymmetric code. Possible codes are given in table 3.

The previous method of using a BCH code and a LDPC code can also be used
in conjunction with any LDPC code that is cyclic. In particular, LDPC codes
derived from projective finite geometry are amenable to this approach. First, let
us recall some facts about projective geometries. An m-dimensional projective
geometry is denoted as PG(m, ps). The points in PG(m, ps) can be put in
correspondence with the non-zero elements of F

mC1
ps . A m-flat in PG(m, ps) is

described by

l0a0 Cl1a1 Cl2a2C/Clmam; li 2Fps and not all li Z 0; ð4:10Þ

and ai 2F
mC1
ps are linearly independent. Any non-zero (mC1)-tuple is a point in

the projective geometry, PG(m, ps). Two tuples are equivalent if one is non-zero
(Fps) scalar multiple of other. Consequently, there are nZ(p(mC1)sK1)/(psK1)
points in PG(m, ps). Let a be a primitive element in FpðmC1Þs and bZan. Then, b
is a primitive element of Fps . A point in PG(m, ps) can also be represented as ai

for some power of a. Since Fps scalar multiples of ai denote the same point,
we denote this equivalence by using (ai), where ðaiÞZfai;bai;.; bp

sK2aig and
0%i%nK1. Let 0%m1!m2%m, then we define NPG(m2, m1, s, p) to be the number
of m1-flats that are contained in a given m2-flat and APG(m2, m1, s, p) to be the
number of m2-flats that contain a given m1-flat. These are given as

NPGðm2;m1; s; pÞZ
Ym1

iZ0

psðm2KiC1ÞK1

psðm1KiC1ÞK1
ð4:11Þ

and

APGðm;m2;m1; s; pÞZ
Ym2

iZm1C1

psðmKiC1ÞK1

psðm2KiC1ÞK1
: ð4:12Þ

Index them1-flats inPG(m, ps) asFj from jZ1 toNZNPG(m2, m1, s, p). The incidence
vector associated with a m2-flat F with respect to the m1-flats is given (as in the
Euclidean case) by
Proc. R. Soc. A (2009)
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IF Z ij
ij Z 1; if Fj is contained in F;

ij Z 0; otherwise:

�����
)(

Index all the m2-flats from iZ1 to JZNPG(m, m2, s, p) and form the J!N
incidence matrix H

ð1Þ
PG from the incidence vectors of all the m2-flats. The null space

of the matrix defines the type-I projective geometry LDPC code. With this
preparation, we are ready to construct asymmetric BCH–LDPC stabilizer codes
from projective geometries.

Theorem 4.15. Let CZC
ð1Þ
PGðm;m; 0; s; pÞ, nZ( p(mC1)sK1)/( psK1) and

d%d0Z(p(mC1)sK1)/(psK1). Then, there exists an

½½n; kx CkyKn; dx=dz ��p
asymmetric stabilizer code, where kxZdim BCHp(d, n), kzZdim C

ð1Þ
PGðm;m; 0; s; pÞ,

dzRAEG(m, m, mK1, s, p) and dxRd.

Proof. Let a be a primitive element of FpðmC1Þs . The code C
ð1Þ
PGðm;m; 0; s; pÞ is

a cyclic code with ah as roots of its generator polynomial if and only if psK1
divides h and max0%l!sWpsðplhÞZ jðps K1Þ for some 0%j%mKm (see Tang
et al. 2005, eqn (27)). In other words, the roots are given by

Z Z fah j ps K1 j h and max
0%l!s

WpsðplhÞZ jðps K1Þ for some 0% j%ðmKmÞg:

The roots of the dual code are given by

Zt Z fah j psK1 j h and min
0%l!s

WpsðplhÞZ jðps K1Þ for some 0! j%ðmC1Þg:

Now by Kasami et al. (1968b, theorem 11), Zt contains a sequence of d0
consecutive roots given by fb;b0;.; bd0K1g in Zt, where bZapsK1 and d0 is given
as d0Z((RC1)qQsC1)/(psK1), where

ðmC1Þðps K1ÞKðmKmÞðpsK1ÞZQðpsK1ÞCR:

It follows that RZ0 and QZmC1. Therefore, there exists a BCH code, D of
design distance d%d0Z(p(mC1)sK1)/(psK1) that contains the dual of the LDPC
code. Additionally, observe that the order of b is ord(a)/gcd(psK1, ord(a))Z
(p(mC1)sK1)/gcd(psK1, p(mC1)sK1)Zn. Therefore,D is a (non-primitive) narrow-
sense BCH code. In conjunction with lemma 3.1, BCHpðd;nÞ and C

ð1Þ
PGðm;m; 0; s; pÞ

give the code with the parameters stated in the theorem. &

It will be useful to have exact expressions for the dimensions of the code
constructed using theorem 4.15. In general, these expressions are fairly
complicated, but for the special case of mZ2 and mZ1, we can compute dim

C
ð1Þ
PGðm;m; 0; s; pÞ explicitly. Additionally, the following fact (Aly et al. 2007,

theorem 10) on the dimension of non-primitive BCH codes is required.

Lemma 4.16 (Aly et al. 2007). Let q be a power of prime and gcd(n, q)Z1
with ordn(q)Zm. Then a narrow-sense BCH code of length qbm=2c%n%qm K1

over Fq with designed distance d in the range 2%d%minfbnqdm=2e=ðqm K1Þc;ng
has dimension
Proc. R. Soc. A (2009)
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k ZnKmðdK1Þð1K1=qÞ:
Putting all these together, we get corollary 4.17.

Corollary 4.17. Let CZC
ð1Þ
PGð2; 1; 0; s; 2Þ, nZ22sC2sC1 and d%2s/2C1.

Then there exists an asymmetric

½½n;nK3sK3sdðdK1Þ=2eK1; d=2s C2��2
stabilizer code.

Proof. From Kou et al. (2001, eqn (21)), we know that CZC
ð1Þ
PGð2; 1; 0; s; 2Þ

is a [n, nK3sK1, 2sC2]2 code. It can be easily verified that the narrow-sense
binary BCH code BCHðd%2s=2C1;nÞ containing the dual of C satisfies the
requirements of lemma 4.16 and is an ½n; nK3sdðdK1Þ=2e;Rd�2 code.
The asymmetric stabilizer code now follows from theorem 4.15. &
5. Performance results

We now give the performance results of some of the codes constructed in §4.
First, we will give the details about the channel model and how the simulations
are performed.

Basically, asymmetric stabilizer codes can give us two benefits. Firstly, over
an asymmetric quantum channel, they can give lower error rates compared with
symmetric codes. We assume in this case we are comparing codes of same rates.
Secondly, for the same error rates over asymmetric channels, the asymmetric
codes can give higher data rates. Let us demonstrate these benefits of asymmetric
quantum codes by means of some simple examples. In order to be fair, we will
compare codes of similar decoding complexity.

In the simulations, we make a simplifying assumption about the channel model
which was first used in MacKay et al. (2004) to simplify the simulation of
quantum LDPC codes. We assume that the overall probability of error in the
channel is given by p, while the individual probabilities of X, Y and Z errors are
pxZp/(AC2), pyZp/(AC2) and pzZpA/(AC2), respectively. The exact
performance would require us to simulate a 4-ary channel and also account for
the fact that some errors can be estimated modulo the stabilizer. However, we
observed that if we ignored the effect of the stabilizer it does not change the error
rates because these codes are non-degenerate. The 4-ary channel can be modelled
as two binary symmetric channels (BSCs) one modelling the bit-flip channel and
the other the phase-flip channel. For exact performance, these two channels
should be dependent; however, a good approximation is to model the channel as
two independent BSCs with crossover probabilities pxCpyZ2p/(AC2) and pyC
pzZp(AC1)/(AC2). In this case, the overall error rate in the quantum channel
is the sum of the error rates in the two BSCs. While this approach is going to
slightly overestimate the error rates, nonetheless it is useful and commonly used
in literature. Since the X-channel uses a BCH code and decoded using a bounded
distance decoder, we can just compute Px

e ; the X-error rate, in closed form as

Px
e Z 1K

XbðdK1Þ=2c

jZ0

n

j

 !
ðpx CpyÞjð1K pxK pyÞnKj : ð5:1Þ
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Figure 1. Performance of a [[15, 1, 3/7]] code described in the text for choices AZ1 (circles), 10
(pluses), 100 (asterisks) of the channel asymmetry.
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The error rate in the Z-channel, Pz
e , is obtained through simulations. The overall

error rate is

Pe Z 1Kð1KPx
e Þð1KPz

eÞZPx
e CPz

eKPx
eP

z
e zPx

e CPz
e :

Example 5.1 (Illustrating improvement of error rate). The highest distance
possible for a (symmetric) [[15, 1]] code is 5. However, should we use an
asymmetric [[15, 1]] code, then we can get an [[15, 1, 3/7]] code. This code can be
constructed by choosing CxZBCHð3Þ and CzZBCHð7Þ in lemma 3.1, both of
length 15. We now consider the performance of quantum codes over a quantum
channel of the form

EðrÞZ ð1KpÞrCpxXrX CpyYrY CpzZrZ ;

where pZpxCpyCpz; pxZpyZpz/A. As we vary the channel asymmetry AZpz/
pxZpz/py, we keep the probability of error pZpxCpyCpz constant. On a
symmetric channel, the asymmetric code is going to fare worse than the
symmetric code. If we increase the asymmetry of the channel then we can see
that the code performance improves. Figure 1 shows the performance of
[[15, 1, 3/7]] code over various asymmetric channels.

While it is not shown here, the performance of the symmetric code does
not change too much as the channel asymmetry is varied. The key observation
is that increasing channel asymmetry improves the performance of the
asymmetric code. Figure 2 compares the performance of the symmetric and
asymmetric codes. For clarity, the asymmetric code’s performance is shown over
three values of channel asymmetry, while the symmetric code’s performance is
shown only when the channel asymmetry is 100, since this is the point of
interest for us.
Proc. R. Soc. A (2009)
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Figure 2. Comparison between the performance of a [[15, 1, 3/7]] that has been described in the text
with the performance of a symmetric [[15, 1, 5]]. The shown curves are the plots for choices of
asymmetry parametersAZ1, 10, 100 for the asymmetric code and theAZ100 for the symmetric code.
Squares, QECC AZ100; circles, AQECC AZ1; pluses, AQECC AZ10; asterisks, AQECC AZ100.

1665Asymmetric quantum codes

 on October 31, 2016http://rspa.royalsocietypublishing.org/Downloaded from 
Example 5.2 (Illustrating data rate gain). Let us now compare the
performance of a [[31, 1, 7]] quantum BCH code with its asymmetric counterpart.
There exists a [[31, 11, 3/7]] quantum BCH code. In figure 3, we see that over a
channel with asymmetry AZ100, the performance of the asymmetric code is
comparable to that of the symmetric code, but we are able to operate at a rate
10 times larger.
(a ) Decoding LDPC codes

The LDPC codes were decoded using an algorithm similar to the hard decision
bit-flipping algorithm given by Kou et al. (2001). This is an instance of the bit-
flipping algorithm originally given by Gallager. The maximum number of
iterations for decoding is set to 50. A small modification had to be made to
accommodate the special situation of quantum syndrome decoding. By
measuring the generators of the stabilizer group, we obtain a classical syndrome,
which, due to the fact that only G1 eigenspaces occur in all of the generators, is
hard information. We use the syndrome as shown in figure 4 and initialize all the
bit nodes with 0 at the start of the algorithm. Then the algorithm proceeds in the
usual fashion as in Kou et al. (2001). We implemented this algorithm and ran
several simulations, which are described next.

In figure 5, we see the performance of [[255, 159, 5/17]], given in table 3, as the
channel asymmetry is varied from 1 to 100. As we observed with the BCH
asymmetric codes in §5, here alsowe see that aswe increase the asymmetry the code
starts to performbetter.As the asymmetry is increased, eventually the performance
of the quantum code approaches the performance of the classical LDPC code.
Proc. R. Soc. A (2009)
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Figure 3. Comparison of the performance of a symmetric [[31, 1, 7]] (squares) code and the
performance of an asymmetric [[31, 11, 3/7]] (asterisks) code for channel asymmetry AZ100.

all zeros
go here

syndrome
goes here

Figure 4. Modification of the iterative message-passing algorithm to the quantum case. The
initialization step is different from the classical case as no soft information from the channel is
available but rather only hard information about the measured syndrome is available. The
algorithm begins with initializing all bit nodes to 0 and the check nodes with the syndrome. From
then on, any classically known method for iterative decoding can be applied. In the figure, this
principle is shown for the example of a classical [7, 4, 3] Hamming code. Application to the
quantum case is straightforward as the decoding algorithm only works with classical information to
compute the most likely error.
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Tolerating a little rate loss improves the performance as can be seen from
figure 6, especially at low channel asymmetries. If we increase the distance of the
BCH code, the code becomes more tolerant to variations in channel asymmetry
as can be seen by the performance of [[255, 143, 9/17]] in figure 7. This plot also
Proc. R. Soc. A (2009)
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Figure 5. Performance of a [[255, 159, 5/17]] code described in the text for choices AZ1 (asterisks),
10 (pluses), 100 (circles) of the channel asymmetry; filled squareZ(X: 0.01292, Y: 0.0001121).
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Figure 6. Performance of a [[255, 151, 7/17]] code described in the text for choices AZ1 (asterisks),
10 (pluses), 100 (circles) of the channel asymmetry; filled squareZ(X: 0.01344, Y: 0.0001013).
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illustrates an important point. Our channel model assumes that as we vary the
channel asymmetry we keep the total probability of error in the channel fixed.
This implies that while the probability of X-errors goes down, the probability of
Z-errors tends to p, the total probability of error. Hence, the reduction in error
Proc. R. Soc. A (2009)
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Figure 7. Performance of a [[255, 143, 9/17]] code described in the text for choices AZ1 (asterisks),
10 (pluses), 100 (circles) of the channel asymmetry; filled squareZ(X: 0.01345, Y: 0.000101).
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Figure 8. Performance of [[1023, 731, 11/33]] code for AZ100.
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rate in the X-channel must more than compensate for the increase in Z-error
rate. If on the other hand, we had fixed the probability of error in the Z-channel
and varied the channel asymmetry then we would observe a monotonic
improvement in the error rate because on one hand the Z-error rate does not
change but the X-error rate does.
Proc. R. Soc. A (2009)
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Comparing with the short length codes of §5 we see that the error rate falls
much more sharply. Larger length codes can potentially give better error rates.
The performance of a code with length 1023 is shown in figure 8.
6. Conclusion and discussion

We have presented several new results regarding asymmetric quantum error-
correcting codes, namely linear programming bounds on the feasible parameters,
constructions based on nested families of classical codes and a CSS construction
based on LDPC/BCH pairs. Furthermore, we have emphasized that for the
simulation of these codes a slight modification of the standard classical belief
propagation type simulation is necessary. We have carried out performance
simulations for some asymmetric quantum LDPC codes and found that as
expected the performance is a function of the channel asymmetry.

The question naturally raises how the codes presented in this work, in
particular those obtained by the LDPC/BCH construction presented in §4,
compare with the codes proposed by Ioffe & Mézard (2007). Strictly speaking,
both constructions have regimes where they can perform better than the other.
But it appears that the algebraically constructed asymmetric codes have the
following benefits with respect to the randomly constructed ones of Ioffe &
Mézard (2007).

—They give comparable performance and higher data rates with shorter lengths.
—The benefits of classical algebraic LDPC codes are inherited as low error floors

compared with the random LDPC codes.
—The code construction is of lower complexity.

Our rationale for these benefits is as follows. Please note that the method of
Ioffe & Mézard (2007) relies on random LDPC codes. The claim that we require
short lengths follows from the fact that the algebraic constructions (considered in
this paper) are better than random LDPC codes with respect to finite-length
effects such as error floors. Since the quantum codes inherit the properties of the
associated classical codes, we expect the codes proposed here to fare better
than those of Ioffe & Mézard (2007) in this regard. This is in addition to the
empirical observations that we construct codes at lengths of 256 with rates
of approximately 1/2 and performance comparable with those of Ioffe & Mézard
(2007), whose lengths are 1024 or greater. The construction of Ioffe &
Mézard (2007) is not systematic in the sense it relies on a random choice of
the code words of the BCH to construct the LDPC code. The construction is also
more complex and it is not clear if the method actually terminates with a good
LDPC code with high probability. By contrast, for the codes proposed in this
paper, the design parameters completely determine the structure of the LDPC
code and the associated asymmetric quantum code.

Our codes also offer flexibility in the rate and performance of the code because
we can choose many possible BCH codes for a given finite geometry LDPC code
or vice versa. The flip side, however, is that the codes given here have a slightly
higher complexity of decoding.
Proc. R. Soc. A (2009)
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Open problems are to study the performance of alternatives to the hard
decision bit algorithm used in the performance simulations. Alternatives would
be to study other ways of message passing such as weighted bit flipping, belief
propagation, etc.

Finally, it will be imperative to study whether the codes constructed in this
paper can be used to perform universal fault-tolerant quantum computing on
them without changing the bias in the error model.

The authors would like to thank Marcus Silva for many useful discussions and for proposing the
combined amplitude damping and dephasing channel, which is our main motivating example. We
would also like to thank the referees for their detailed comments on the paper and for bringing to
our attention relevant work by Knill et al. (1996) and Steane (1996). One of us (P.K.S.) would like
to acknowledge the hospitality of NEC Laboratories America, Inc., wherein part of this research
was conducted. This research was also supported by NSF CAREER award 0347310 and NSF grant
CCF 0622201.
Appendix A. Proof of theorem 2.1

Theorem A.1. Given a combined amplitude damping and dephasing channel E
as above, the associated Pauli-twirled channel is of the form

ETðrÞZ ð1K pxK pyK pzÞrCpxXrX CpyYrY CpzZrZ ;

where pxZpyZð1KeKt=T1Þ=4 and pzZ1=2K pxKð1=2ÞeKt=T2 . In particular,

pz
px

Z 1C2
1Kexpðt=T1ð1KT1=T2ÞÞ

et=T1 K1
:

If t/T1, then we can approximate this ratio as 2T1/T2K1.

Proof. A Kraus operator-sum decomposition of E is given by

EðrÞZ
X2
kZ0

AkrA
†
k ; where A0 Z

1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1KlKg

p

" #
;

A1 Z
0 0

0
ffiffiffi
l

p

" #
; A2 Z

0
ffiffiffi
g

p

0 0

" #
;

9>>>>>=
>>>>>;

ðA1Þ

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1KgKl

p
ZeKt=T2 , 1KgZeKt=T1 . We can rewrite the Kraus operators Ai as

A0 Z
1C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1KlKg

p

2
1C

1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1KlKg

p

2
Z ;

A1 Z

ffiffiffi
l

p

2
1K

ffiffiffi
l

p

2
Z ;

A2 Z

ffiffiffi
g

p

2
XK

ffiffiffi
g

p

2i
Y :
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Rewriting EðrÞ in terms of Pauli matrices yields

EðrÞZ 2KgC2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1KlKg

p

4
rC

g

4
XrX C

g

4
YrY C

2KgK2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1KlKg

p

4
ZrZ

K
g

4
1rZK

g

4
Zr1C

g

4i
XrYK

g

4i
YrX : ðA2Þ

It follows that the Pauli-twirled channel ET is of the claimed form (see Dankert
et al. 2006, lemma 2). In particular, note that twirling removes the asymmetric
terms in equation (A 2).

Computing the ratio pz/px , we obtain

pz
px

Z
2KgK2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1KlKg

p

g
Z

1CeKt=T1K2eKt=T2

1KeKt=T1
Z 1C2

eKt=T1KeKt=T2

1KeKt=T1

Z 1C2
1Ket=T1Kt=T2

et=T1K1
Z 1C2

1Kexpðt=T1ð1KT1=T2ÞÞ
et=T1K1

:

If t/T1, then we can approximate the ratio as 2T1/T2K1, as claimed. &
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