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Abstract—Multi-server distributed systems are becoming in-
creasingly popular with the emergence of cloud computing. These
systems need to provide high throughput with low latency, which
is a difficult task to achieve. Manual performance tuning and
diagnosis of such systems, however, is hard as the amount of
relevant performance diagnosis data is large. To help system
developers with performance diagnosis, we have developed a
tool called Performance Anomaly Detector (PAD). PAD combines
user-driven navigation analysis with automatic correlation and
comparative analysis techniques. The combination results in a
powerful tool that can help find a number of performance
anomalies. Based on our experience in applying PAD to the
Orleans system, we discovered that PAD was able to reduce
developer time and effort detecting anomalous performance cases
and improve a developer’s ability to perform deeper analysis of
such behaviors.

Index Terms—Performance Diagnostics, Anomaly Detection,
Performance Bottlenecks, Distributed Systems, Orleans.

I. INTRODUCTION

Multi-server distributed systems have become popular with
the emergence of cloud computing. Most distributed systems
nowadays are built from cost effective off-the-shelf multi-
server systems instead of high performance single server
systems [1]. While cloud technologies provide seamless scala-
bility, achieving high performance in terms of high throughput
and low response time is still challenging and important. Good
performance improves user experience and helps attract more
users, while bad performance results in dissatisfaction. It is
therefore important to continually analyze the performance
of a cloud-based distributed system to ensure it is executing
within its performance requirements. When the required per-
formance is not provided, it is necessary to identify and resolve
the performance bottlenecks in a timely manner.

Diagnosing functional problems in distributed applications
is hard. Performance diagnosis of distributed systems is
harder [2], as the system may execute without any functional
problems while not achieving expected performance goals.
Under-achievements of performance goals can be in the form
of low throughput or high latency. In such situations, system
execution logs might not contain direct clues (e.g., error
messages or exceptions) that can be used as a starting point for
analysis. Instead, they usually include performance counters
that track different aspects of system performance.

Developers and testers typically analyze the performance
counters to find system performance anomalies and reason
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about performance characteristics. Multi-server systems, how-
ever, contain hundreds of servers each constantly generating
performance data—making manual analysis error prone and
time consuming. It is therefore essential to develop techniques
and build automatic tools for performance analysis and di-
agnostics of large multi-server distributed systems using the
performance data generated during execution.

To diagnosis performance problems in distributed multi-
server systems, we have developed a tool called Performance
Anomaly Detector (PAD). The objectives of PAD are: (a)
give distributed system developers insights about distributed
system performance from collected performance data; (b)
minimize developer time required to analyze large amounts
of performance data generated across hundreds to thousands
of servers; and (c) assist system developers and administrators
in troubleshooting performance related issues and finding root
causes.

To achieve the above goals PAD provides:

1) Summary of distributed system performance data using
visualizations and summary statistics;

Threshold analysis for performance counters;
Correlation analysis for automatic detection of relation-
ships between performance counters; and

Comparative analysis for automatic detection of anoma-
lous performance counters.

2)
3)

4)

The capabilities listed above enable a powerful combination
of user-driven navigation analysis and automatic analysis. In
user-driven navigation analysis, the person troubleshooting the
system applies expert knowledge in a semi-manual process
assisted by the tool. When this process does not lead to
successful problem resolution, automatic correlation and com-
parative analysis techniques are used to automatically try to
find clues for performance problems.

Orleans. The motivation for developing PAD started with
our experience diagnosing the performance of the Orleans
system [3]. Orleans is a programming model and runtime for
large-scale distributed cloud computing services. Orleans is
based on an actor programming model. Actors in Orleans
are virtual and isolated computation entities that use asyn-
chronous message passing to communicate. The actor model is
suitable for interactive request-reply applications (as opposite
to MapReduce [4] style models that are suitable for offline



batch processing) and is highly scalable due to the independent
nature of actors and their interactions.

Although the main design goal of Orleans is to simplify
the programming model for cloud applications while pro-
viding scalability and reliability, providing efficiency is not
less important for cloud applications that pay for consuming
cloud resources. It is thus critical for Orleans to provide
good performance. To ensure Orleans and its applications are
executing within their performance requirements, it is neces-
sary to continually track its performance. When performance
requirements are not met, it is necessary to identify and resolve
performance bottlenecks in a timely manner.

The above requirements motivated us to create PAD. We
have used Orleans performance tests data to validate the
applicability of our tool. Current applications of PAD show
that it is capable of supporting root cause analysis of per-
formance problems in Orleans. It is important to note that
the applicability of the techniques we have developed as well
as the PAD tool itself are not limited to Orleans and can be
applied to any multi-server distributed system which generates
performance data.

Paper organization. The remainder of this paper is organized
as follows: Section II provides background information about
performance diagnosis and challenges specific to PAD; Sec-
tion III presents two examples that motivated the development
of PAD; Section IV presents how PAD is used by developers
to find performance problems and their root causes; Section V
describes PAD implementation; Section VI discusses how we
applied PAD to Orleans; Section VII discusses related work
and Section VIII provides conclusion and lessons learned.

II. BACKGROUND INFORMATION AND CHALLENGES

This section discusses background information related to
our work and introduces the challenges we had to overcome
while designing and implementing PAD.

A. Background on Performance Diagnosis Techniques

Performance diagnosis of software systems can be divided
into two main tasks: performance anomaly detection and root
cause analysis.

Anomaly detection. An anomaly is defined as deviation from
a common rule, arrangement, or form [5]. Two prominent
approaches, in literature, have been used to detect software
performance anomalies:

1) Detecting anomalies based on performance requirements.
This method is used when system performance fails to meet
its requirements. Performance requirements can either be
specified explicitly via Service Level Agreements (SLAs) [6],
[7], or implicitly reflect internal implementation details (e.g.,
a desired average server CPU or size of a message queue).

2) Detecting anomalies based on deviations from normal
performance. This method is used when there are no specific
performance requirements, but performance deviates from
the considered norm. For example, performance results of a
software release are significantly worse then a prior release;

or performance metrics of a particular server deviate from
the performance of other identical servers. In these situations,
aggregated values (e.g., mean, median, or standard deviation)
of abnormal performance data can be compared against the
corresponding data of normal performance [8]. A deviation can
be defined based on a threshold value, or developer’s domain
knowledge of the system.

Root cause analysis. Root cause analysis [9] is a process
of identifying the reasons for software execution failures. In
the context of performance, it is the process of identifying
the source of performance anomalies. Some examples of root
causes of performance anomalies include deadlocks and star-
vation [10], mis-configurations [11], and software performance
anti-patterns [12].

Performing root cause analysis sometimes requires expert
knowledge. For example, some systems may need to be
configured in a certain way to achieve optimal performance
and only system experts may have the knowledge about those
configurations. Likewise, detecting performance anti-patterns
may require inspecting the systems’s source code, but only
someone knowledgeable of the source code can do that. It is
therefore important to integrate expert knowledge in a practical
tool for root cause analysis. In addition, automatic detection of
root causes due to mis-configurations and bad software designs
is possible as well [11], [12].

B. Performance Counters

When run in production, multi-server distributed system
performance is closely monitored. The collected performance
data is stored in execution logs in the form of performance
counters [13]. Performance counters track specific system
states or resources during execution, such as CPU, memory,
network, and application/framework specific information. Typ-
ical large production multi-server distributed systems run on
clusters consisting of hundreds to thousands of servers. Each
server periodically (typically every couple of minutes) tracks
a large number of counters (hundreds in [13]) and stores them
in the log.

In Orleans, a typical deployment consists of tens to hundreds
of servers each tracking about 200 counters every five minute.
The log is either stored separately for each server in its local
file system or in a shared cloud storage, such as Azure Table
storage'. Table I provides examples of different classes of
performance counters in Orleans.

Type

Examples

Orleans Runtime | CPU usage, Percentage of time in garbage collection

Message Queues | Lengths of the send and receive message queues

Messaging Number of total messages sent and received

Actors Number of actors on a server

TABLE I: Examples of different classes of performance coun-
ters in Orleans

Uhttp://www.windowsazure.com/en-us/develop/net/how-to- guides/
table-services/



C. Challenges in Analyzing Performance Counter Data

The approaches used in PAD are based on the above
mentioned performance diagnosis techniques. In addition, we
have tackled a number of unique challenges in our setting that
we detail below.

1) Large data volumes. As already mentioned, multi-server
distributed systems generate a large amount of performance
data, which is impossible to analyze manually. Navigating the
vast amount of data is also hard as it is not easy to decide how
to slide-and-dice it: (1) what set of performance counters to
consider and (2) whether to look at the performance counters
across different servers at a particular time, particular server
across different times, or both.

Developers sometimes have an idea, or clue, about the
source of the problem. In such cases, they can manually
inspect the relevant counters. For most performance issues,
however, it is hard to decide what counters are relevant.
Incorrect selection can cost valuable developer time at best
and/or lead to wrong conclusions at worse. It is therefore
important to inspect the performance counters that are more
closely related to the problem under investigation.

2) Insufficient training data. One approach for performance
diagnosis is to classify the counters into performance crisis
situations, as done in [14], [15]. This kind of classification re-
quires many different datasets and known labels (performance
crisis situations) in order to apply machine learning based
classification techniques. Such labeled datasets, however, are
not always available. For example, although Orleans has been
used in several projects within Microsoft, we did not have
access to any labeled historical data. Because the labeled
performance crisis data was unavailable, we could not apply
machine learning classification techniques.

3) Time correlation. A distributed nature of the systems we
consider poses a major challenge when correlating data col-
lected from different servers across time. Servers are located
on different physical machines, each having a different physi-
cal clock that may not be always synchronized. Unfortunately,
some performance counters are sensitive to time and therefore
even a 1 second approximation may give incorrect results.

III. MOTIVATING EXAMPLES IN ORLEANS

The need for PAD emerged since the early stages of
the Orleans project when we occasionally faced non-trivial
bugs that required manually looking through large sets of
execution logs—Iliterally searching for a needle in a haystack.
We describe two such examples and specific data exploration
techniques we used.

A. Stuck Random Number Generator

On one occasion, our regression performance test running
on a cluster of servers failed after running fine for several
hours. The external symptoms were lower than expected
throughput and a large number of failed requests. We started
by scanning and grepping through the logs with scripts to find
a point in time where the number of failed requests suddenly

started to grow. We then continued searching for the root
cause.

After a laborious process of comparing performance coun-
ters across different servers, we discovered that some perfor-
mance counters started to significantly diverge starting roughly
at the time when the requests began timing out. In particular,
there was one server that received a much larger number of
requests than the other servers. Looking at the logs of this
server, we consequently discovered that a disproportionally
large number of actors were placed on it compared to other
servers. This imbalance kept growing as the time advanced.

In this specific test, the actors were randomly placed on
servers and the expectation was the number of actors (and
as a result also the number of requests) should be roughly
equal across all servers. We now had the evidence that from a
certain point on, disproportionally more and more actors were
placed on one server only. That lead us to look closer into the
placement logic. After a thorough code analysis we discovered
that we were using the random number generator (RNG) in
a thread-unsafe manner. C# RNG is not thread-safe and, if
accessed simultaneously by multiple threads, can get “stuck”
returning zero forever. This caused actors to be placed on one
server (with index zero) from the moment the RNG got stuck.
The fix was to protect access to RNG with a lock.

B. Leaking Buffer Pool

In this occasion, we observed decreasing throughput and
growing requests latency. By using similar manual techniques
like in the RNG case above, we were able to correlate the
performance degradation with increasing memory pressure. At
approximately the same time as the performance started to
degrade, the amount of available memory in the system started
to shrink and the overhead of garbage collection activities
started to increase. This lead us to suspect a memory leak.
Although Orleans is written in a managed language, it uses
a custom buffer pool for messages aimed at minimizing the
rate of memory allocations and reducing the pressure on the
memory subsystem and the garbage collector. Consequently,
we found a bug in our buffer pool implementation that caused
code acquiring the buffer from the pool to occasionally not
release it back to the pool (i.e., leaking memory).

The above two bugs helped us define a number of require-
ments for PAD: (1) ability to visualize performance counters
across time and easily find points in time when values start
diverging from the norm; (2) automatically find counters that
exhibit large variance across different servers (Comparative
Analysis within a dataset); (3) automatically correlate one
counter that we knew to be a symptom of a problem to other
counters that could potentially lead to the root cause of the
anomaly (Correlation Analysis).

IV. PAD-ASSISTED INVESTIGATION

In this section, we describe how PAD assists developers
in finding performance problems and anomalies. Developers
start the troubleshooting process when they suspect that a
performance related problem has occurred. As detailed in
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Fig. 1: Three visualization graphs provided by PAD.

Section II, this can be either deviation from explicit perfor-
mance requirements like SLAs, implicit internal implementa-
tion requirements (e.g., CPU time) or deviation from normal
performance learned from previous executions.

The developer troubleshooting the system is engaged in
a PAD-assisted investigation process, which combines their
expert knowledge, manual steps, and automatic anomaly de-
tection techniques to find performance problems and its root
cause(s). PAD helps developers in every step of this process,
which typically involves the following five steps: (1) collecting
the performance counters data; (2) visualizing the data; (3)
threshold analysis; (4) correlation analysis; and (5) compar-
ative analysis. Steps 1, 4, and 5 are completely automated
by PAD, while steps 2 and 3 are manual steps assisted by
PAD. We now describe each step in a typical troubleshooting
workflow session in detail.

Step 1 - Performance Data Collection. The developer starts
by directing PAD to gather relevant performance counter data.
The developer only needs to provide the location of the log
files, or the Azure storage account that holds the logs, and the
PAD automatically downloads the data, parses it, and stores it
in an in-memory compact data structure.

Step 2 - Data Visualization. After data is gathered, the
developer typically wants to visualize it. Visualizing the data
can sometimes reveal the problem quickly without requir-
ing further complicated analysis. System developers typically
suspect certain performance counters, which they prefer to
analyze first. The selection of the performance counters is
based on developer’s knowledge about the system, and the
performance diagnosis issue of interest. For example, if the
developer suspects that the system is experiencing memory
pressure, the developer can use PAD to visualize and sum-
marize performance counters related to garbage collection or
memory usage. PAD provides three different visualizations for
different data views:

1) Detailed view. In the detailed view, PAD provides a
3D data plot. A 3D plot allows the developer to visualize
and compare values both spatially (across all servers) and
temporally (across time). Figure 1a illustrates an example plot
produced by PAD for one performance counter. The X-axis
represents server name, the Y-axis represents time, and the
Z-axis represents the performance counter value. Any point

in the plot captures the value of a performance counter at a
particular time and in a particular server. The detailed view
provides developers with overall trend information based on
time and location. It can also prompt developers to perform
further analysis when there are spikes (or anomalies) in the
plot.

2) Server view. In the server view PAD visualizes summary
statistics (i.e., average, median, standard deviation, minimum,
maximum, and quantiles) across time for a selected perfor-
mance counter in each server. Figure 1b illustrates an example
of a server view graph, which is called a stock type chart [16],
because it shows the average, maximum and minimum values
of the performance counter in each server. This view allows
developers to quickly compare performance counter summary
statistics across all servers.

3) Time view. In the time view, PAD visualizes summary
statistics (i.e., average, median, standard deviation, minimum,
maximum, and quantiles) across all servers for a selected
performance counter at each time point. Figure 1c illustrates an
example of a time view graph. The time points are calculated
with respect to the start time of system execution. This view
allows developers to quickly compare performance counter
summary statistics across all times regardless of the server.

By providing visualizations in three different views devel-
opers are able to gain more insight about system performance.
For example, spike in the server view might be an indication of
a hot server that performs more work than others. This allows
developers to reduce the problem space into one particular
server and concentrate further investigations at this server
(like in the case in Section III-A)—eventually saving time.
The visualization may not reveal any insights, or may trigger
further analysis, including the need to look for other counters
or compare certain counter values to predefined thresholds.

Step 3 - Threshold Analysis. In threshold analysis, de-
velopers define threshold values for a given counter. PAD
compares counter values (or their statistical properties, i.e.,
means, medians, and quantiles) against the predefined thresh-
old values. Performance counters that violate their threshold
are reported back. Developers define thresholds using an
XML configuration file. Listing 1 illustrates an example for
configuring thresholds for different performance counters.
Developers can configure thresholds that apply to the de-



tailed, server, or time view of each performance counter.
Developers can specify what statistical property (e.g., mean,
median) to apply the rule to, or that the threshold should
be compared with all values of the distribution. Likewise,
developers can specify an expected percentage with respect
to a statistical property. For example, the developer can
ask to find all the occurrences of a particular performance
counter exceeding more than X% from the median. Finally,
threshold analysis in PAD supports Z-score [17] comparisons
for each value in the distribution. This helps developers detect
outliers when the values are distributed according to a normal
distribution.

Threshold analysis is usually used in combination with
expert knowledge related to acceptable range of values for
certain counters. For example, the developer may want to
check if the time spent in garbage collection (GC) has exceed
15% of the CPU time at any point in time. Listing 1 illustrates
an example configuration file with two rules: (1) find any time
and server that the value of the PercentOfTimelnGC counter
was greater than 15% (“any in the detailed view”) and (2)
find any time that the average value of the NumQueuedMsgs
counter across all servers was greater than 5 (“average in the
time view”).
<ThresholdConfig>
<PerformanceCounter Name="Runtime .GC.PercentOfTimeInGC”>

<Rule AppliesTo="DetailView”>

<Statistic >Any</Statistic >
<ExpectedValue >15</ExpectedValue>
<ComparisonOperator>GreaterThan </ComparisonOperator>
</Rule>

</PerformanceCounter>

<PerformanceCounter Name="MessageQueue . NumQueuedMsgs”>
<Rule AppliesTo="TimeView”>
<Statistic >Average </Statistic >
<ExpectedValue >5</ExpectedValue>
<ComparisonOperator>GreaterThan </ComparisonOperator>
</Rule>

</PerformanceCounter>
</ThresholdConfig>

Listing 1: Example threshold analysis configuration file.

Step 4 - Correlation Analysis. Using the first three steps
above, the developers may be able to find what counters be-
have abnormally. This, however, may not facilitate root cause
analysis. For example, imagine the developer has established
that a certain server spends more than 15% in GC. The
question now is why? What has happened in the system to
cause this undesired behavior? The developer may not have
a direct answer to this question and may not know the exact
counter to look for. In such a situation, the developer can use
correlation analysis to find the counters responsible for the
root of the problem.

In correlation analysis PAD detects a set of counters that
can explain the distribution of another performance counter.
PAD supports two correlation analysis techniques:

1) Pearson Coefficient. The Pearson coefficient is used to
check whether any two performance counters have a linear
correlation [17]. Pearson coefficient calculates a value in the
range [-1, 1]. The closer this value to either endpoint, the
greater the correlation between the two performance counters.

2) Spearman Coefficient. The Spearman coefficient is a
measure of how well two counters can be described using a
monotonic function [17]. Spearman coefficient also provides
a value in the range [-1, 1]. When the value is close to either
endpoint, the two performance counters can be explained as a
monotonically increasing function of the other.

PAD finds all explanatory counters that have a correlation
value greater than some X (usually 0.9 in our usage) with the
performance counter of interest using Pearson and Spearman
correlations. This enables system developers to narrow down
reasons for abnormal values in certain performance counters.

An example of using correlation analysis is when the time
in GC exceeded the threshold of 15%, the tool found that
this spike in GC activity correlated to a spike in a number
of queued requests in this server. The server in question was
receiving more load than the other servers and failed to keep
up. This provided developers with enough information to look
into the reason for load imbalance, and helped the developers
identify the root cause.

Step 5 - Comparative Analysis. Sometimes the developer
may not know what counters to start with. In such situations,
using visualization or threshold analysis might be too time
consuming, provide too much data that is hard to analyze,
and have a low chance of finding the root cause. In such cases
PAD can help automatically detect anomalous counters based
on statistical properties, such as average, median and quantiles,
that deviate from other “normal” behavior of this counter.

PAD finds abnormal performance counters using compar-
ative analysis [18]. Comparative analysis is a form of ex-
ploratory data analysis technique where statistical properties
of different view points of a performance counter dataset
are compared against each other. More specifically, PAD
implements the following comparative analysis methods:

1) Comparative analysis within a dataset. In this analysis,
PAD uses a given dataset to find performance counters that
have abnormal statistical properties either in specific servers,
or at different time points. PAD uses Equation 1 for compar-
ative analysis within a dataset.

B |GlobalMedian - LocalMedian’
o Global StandardDeviation

In this equation, we use a global median as a reference point
to compare with a local median. A local median is a statistical
property of the distribution of the performance counter in
a server, or at a time point. PAD uses medians instead of
averages because they are more robust to noisy data [14] (high
and low fluctuations of a performance counter will have little
impact on the median). Both metrics will therefore remain
stable enough to use as a reference for comparison.

By taking the different between the global and local medi-
ans, PAD calculates a local counter’s deviation with respect
to its global value. Finally, PAD normalizes the calculated
deviation by the standard deviation of the global distribution
to account for the fact that different performance counters
can have different ranges of values. This provides PAD with
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Fig. 2: Design of PAD.

a normalized method for comparing different counters that
would be hard to compare using raw values.

2) Comparative analysis between datasets. PAD can also
be used to compare different datasets, such as different re-
gression test runs of the same application or different system
releases. In this analysis, the developer specifies the reference
(“correct”) dataset, and PAD attempts to detect suspicious
performance counters in the anomalous dataset. PAD uses
Equation 2 for comparative analysis between datasets.

|RefDatasetMedian — DatasetMedian|
RefDatasetStdDev

As illustrated in Equation 2, PAD uses global medians and
standard deviations of each performance counter in each
dataset to calculate the deviation value X. PAD automatically
performs the comparative analysis for all counters (the de-
veloper does not need to specify specific counters as in the
threshold or comparative analysis). Once the suspicions coun-
ters are found, the developer can use PAD for visualization,
threshold, and correlation analysis of the performance counters
PAD has identified.

X = 2

V. IMPLEMENTATION OF PAD

Figure 2 shows the overall workflow of PAD and its internal
modules. PAD can either collect data from Azure storage or
log files. The data collection component is decoupled from the
analysis components so that new data sources can be integrated
without changing the analysis modules. After collecting the
data, PAD builds an in memory model that is used by all
analysis modules.

PAD (by default) implements the analysis techniques de-
scribed in the previous section. Develoeprs can also extend
it with their own analysis techniques through an extensible
analysis framework. The different features of PAD (e.g., how
to collect data, what type of analysis to use, and how to
use visualization) are easily configurable via XML. Last, the
visualization component of PAD is based on automatically
generating Excel charts for selected set of performance coun-
ters and uses C# COM interface of Microsoft Excel.

Time correlation. As specified in Section II-C, another chal-
lenge in analyzing the performance of Orleans is correlating
the counters across different servers at different points in time.

This is a common problem in distributed systems, where there
is no global clock shared by all servers and where per-server
clocks may not be fully synchronized [19].

Prior research efforts have proposed several techniques,
such as vector clocks [20], to address this problem. These
approaches, however, are intrusive as they requires system in-
strumentation, and send messages between servers to perform
the correlation. PAD uses a different approach. PAD’s goal is
to find the distribution of values of a particular performance
counter at time point ¢; from all servers. Since servers do not
start at exactly the same time, we first find two time points
[ts,tf] where ¢, is the latest starting time point of performance
counters recording across all servers and t; is the earliest
finish time point of counters recording across all servers. We
consider counter values in all servers during [¢s,¢¢] only.

Assuming the configured periodic logging interval of per-
formance counters is d, PAD calculates the maximum number
of time points N that can be contained inside the time interval
[ts,ts] using Equation 3.

Sy

Since clocks of different servers may not be synchronized, all
servers may not have exactly /N time points. PAD therefore
takes the maximal N’ time points that are common to each
server such that N’ < N. PAD then indexes each time point
from 1 to N starting from ¢, in each server. Because we have
taken the same number of points from each server, it allows
PAD to correlate performance counter values at similar indices
in each server. The distribution of performance counter values
at each time point are the correlated values at each index.

VI. APPLYING PAD TO ORLEANS

This section discusses two applications of PAD to analyze
the performance counters in Orleans. In these particular sce-
narios, we used automated Orleans performance tests running
on 25 servers machines and a set of client machines as load
generators. Each client is configured to send 1 million requests.

A. Unbalanced DHT

In Orleans, actor instances are hosted on all servers. A
distributed directory maps actor identities to their locations
so incoming requests are brokered to their correct locations.



The actor registry is implemented as a Distributed Hash Table
(DHT) [21]. Each server is responsible for hosting a portion
of the DHT. It is important to keep the DHT balanced so each
server handles roughly the same amount of requests related to
resolving actors locations.

During one test, Orleans was experiencing lower than
expected throughput. We first analyzed Orleans perfor-
mance counters using PAD by performing a compar-
ative analysis within a dataset (Equation 1 in Sec-
tion IV) on a problematic performance test dataset. PAD
found two anomalous performance counters in one particu-
lar server: Directory.Registrations.Local counter and Direc-
tory.Registrations.Remote.Received counter. This means that
the number of local registrations of the DHT in this server was
high compared to other servers (Directory.Registrations.Local)
and that it also received more remote registration requests than
other servers (Directory.Registrations.Remote.Received). This
was caused by the fact that this server was responsible for a
much larger portion of the DHT. PAD therefore was able to
correctly identify the anomalous performance counters related
to this issue. More importantly, PAD helped us pinpoint the
root cause of performance degradation.

B. Performance Bottleneck and Tuning Analysis

We also used PAD to assist us in evaluating various per-
formance optimization techniques in Orleans. As part of this
work, we analyzed the impact of the different optimization
techniques on performance (e.g., end-to-end throughput and
latency) and specific performance counters. For example,
we implemented a certain batching algorithm and inspected
its impact on end-to-end throughput, number of messages,
message size distribution, buffer pool, and number of socket
system calls. PAD therefore allowed us to quickly assess
the effectiveness of various optimization techniques on low-
level system components and greatly shortened our trial cycle.
Without PAD, detailed investigation of a large number of
performance counters would be very difficult.

VII. RELATED WORK

A. Approaches that Rely on Historical Performance Data and
Known Performance Problems

There are several related works [8], [13], [22], [23] on
analyzing performance of large-scale distributed systems sim-
ilar to Orleans. Similar to PAD, these approaches rely on
performance counters to detect performance anomalies. Foo
et al. [22] calculate performance signatures from previous
executions and use them as a baseline to compare against
performance signatures of new executions. They assume that
older executions do not suffer from performance anomalies.
This approach is close to regression testing as it validates if
anomalies are introduced into newer software versions. They,
however, only do comparative analysis, which only provides
a Yes/No answer on performance anomalies. In contrast, PAD
facilitates different types of analysis beyond regression testing.

Nagaraj et al. [24] propose a method to compare two system
logs, one with good and one with bad performance. After

categorizing log messages as events and states, they calculate
summary statistics for event timings, event counts, and state
variable values used to compare the logs. Their approach is
similar to the comparative analysis in PAD, but they do not
provide other non-comparative techniques.

Bodik et al. [14] also propose a signature-based perfor-
mance anomaly detection. Their method calculates signatures
called fingerprints from historical performance data collected
during a performance crisis. The goal is to quickly identify
whether a similar performance crisis has occurred in the past
so that known solutions can be applied. This approach is hard
to apply when there are no previously known crises.

B. Approaches that Do Not Require Historical Data

Malik et al. [13] applied Principal Component Analysis
(PCA) [25] to reduce the number of counters used to analyze
performance anomalies. The main assumption is that counters
that have high variance are the ones that represent the per-
formance anomalies. This assumption, however, does not hold
in all cases. For example, a system that experiences varying
workloads may result in high variances in most performance
counters without any actual performance problem.

Attariyan et al. [11] proposed a performance summarization
approach for identifying root causes of performance anomalies
based on human errors, such as misconfigurations. They used
dynamic binary instrumentation [26] to monitor application as
it executes instead of execution logs or performance counters.
However, their techniques only focus on misconfigurations and
do not help to find root causes for other performance problems,
such as bugs in implementation or design, like PAD.

Finally, there are other approaches [27]-[29] that use anno-
tated software models to detect performance anti-patterns [30].
These approaches, however, use software model simulations
and not real production software. Moreover, these approaches
do not rely on statistical analysis, but instead use rules and
logical-predicate analysis to detect performance problems.

VIII. LESSONS LEARNED AND CONCLUSIONS

In this paper, we presented PAD, a tool to analyze per-
formance counters in multi-server distributed systems. PAD
combines user-driven navigation analysis with automatic cor-
relation and comparative analysis techniques. Based on our
experience in applying PAD to the Orleans framework, we
discovered that PAD was able to reduce developers’ time
and efforts in detecting anomalous performance cases and
improve developers’ ability to perform deeper analysis of such
behaviors. Below we detail the lessons learned based on our
experience with PAD.

1) Visualization and summary statistic is a key part in per-
formance anomaly detection. Visualization provides a quick
overview of performance and triggers deeper analysis when
needed. We believe that visualization should be the first step in
human-based performance anomaly detection. Multiple view
points (server or time) as well as summary statistics (e.g.,
average, median, standard deviation, minimum, maximum, and



quantiles) are very helpful in navigating the large amounts of
data, and selecting a view for further analysis.

2) Reducing the data size. It is important to reduce the
number of performance counters before visualizing data and
performing root cause analysis. This saves developers time
and effort by focusing their attention on data most relevant
to the anomaly. For example, although Orleans has nearly
200 performance counters, we discovered certain performance
issues can be summarized using only few counters.

We also tried to apply Principal Component Analysis to re-
duce the number of performance counters used in the analysis.
This approach transformed the original performance counters
into a different, smaller dataset with different dimensions. The
new counters, however, bared no semantic meaning, could not
be correlated back to the actual system, and did not help us
with root causes analysis.

3) Fully automated root cause analysis for performance
anomalies is hard. Existing research on automating root cause
analysis is based on functional failures [9], [31]. As explained
in Section VII, expert knowledge is required to analyze the
root causes of performance anomalies. This knowledge differs
from system to system, which makes it hard to generalize and
automate. PAD addresses this challenge by combining auto-
matic correlation and comparative analysis with manual user-
driven navigation analysis. We still believe that commonalities
between different automated root cause analysis processes
must be identified and reused. Finally, techniques to formalize
the required expert knowledge from different domains are
required so developers can begin developing domain-specific
automated techniques for root cause analysis.
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