




Disclaimer 
READ THIS … its very important 

• The views expressed in this talk are those of the 
speaker and not his employer. 

• This is an academic style talk and does not address 
details of any particular Intel product.  You will learn 
nothing about Intel products from this presentation.   

• This was a team effort, but if I say anything really 
stupid, it’s my fault … don’t blame my collaborators. 

 

Slides marked with this symbol were produced by Kurt 

Keutzer and myself for CS194 … A UC Berkeley course on 

Architecting parallel applications with Design Patterns. 

Third party names are the property of their owners. 
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The many core challenge 

 Result: a fundamental and dangerous mismatch 

 Parallel hardware is ubiquitous … Parallel software is rare  

 The Many Core challenge … 

 Parallel software must become as common as parallel hardware 

After ~30 years of parallel computing research, we know:  

(1) automatic parallelism doesn’t work   

(2) an endless quest for the perfect parallel language is counterproductive ... 

“worse is better” (Richard Gabriel, 1991) 

 

So how can we address the many core challenge? 

 A harsh assessment … 

 We have turned to multi-core chips not because of the success of 
our parallel software but because of our failure to continually 
increase CPU frequency. 



Architecting Parallel Software 

 We believe the solution to parallel programming starts with 
developing a good software architecture 



Architecting Parallel Software 

 We believe the solution to parallel programming starts with 
developing a good software architecture 

• Analogy: the layout of machines/processes in a factory 



Architecting Parallel Software 

 We believe the solution to parallel programming starts with 
developing a good software architecture 

• Example: SW Architecture of Large-Vocabulary Continuous Speech Recognition  

… and how do we systematically describe software architectures? 
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Graph-Algorithms 

Dynamic-Programming 

Dense-Linear-Algebra 

Sparse-Linear-Algebra 

Model-View-Controller  

Iterative-Refinement 

Map-Reduce 

Layered-Systems 

Puppeteer 

Pipe-and-Filter 

Agent-and-Repository 

Process-Control 

Event-Based/Implicit-Invocation 

Arbitrary-Static-Task-Graph 

Unstructured-Grids 

Structured-Grids 

Graphical-Models 

Finite-State-Machines 

Backtrack-Branch-and-Bound 

N-Body-Methods 

Circuits 

Spectral-Methods 

Monte-Carlo 

Applications 

Structural Patterns  Computational Patterns 

Task-Parallelism 

Divide and Conquer 
Data-Parallelism 

Pipeline 

Discrete-Event  

Geometric-Decomposition 

Speculation 

SPMD 

Kernel-Par. 
Fork/Join 

Actors 

Vector-Par 

Distributed-Array 

Shared-Data 

Shared-Queue 

Shared-Map 

Parallel Graph Traversal 

Coordinating Processes 

Stream processing  

Parallel Execution Patterns 

Parallel Algorithm Strategy Patterns 

Implementation Strategy Patterns 

Communication 

Shared Address Space Threads 

Task Driven Execution 

Algorithms and Data structure Program structure 

Synchronization 

Loop-Par. 

Workpile 

Thread/proc management 

Concurrency Foundation constructs (not expressed as patterns) 

Task Decomposition 

Data Decomposition 

Ordered task groups 

Data sharing 

Design Evaluation 

Finding Concurrency Patterns  

Our Pattern Language (OPL 2012) 



9 13 dwarves 

Researchers from UCB, Intel, 
UIUC, and others 
collaborated to create “the 
grand canonical pattern 
language” of parallel 
application programming.  

“Our Pattern Language” (OPL) 

Pattern Language of 
Parallel Programming 
(PLPP) 



•Graphical Models 

•MapReduce 
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•Pipe-and-Filter 

Pattern examples 

Structural Patterns: Define the software structure .. Not what is computed 

•Iterative refinement 

Computational Patterns: Define the computations “inside the boxes” 

•Structured mesh 

Parallel Patterns: Defines parallel algorithms 

•Fork-join •SPMD •Data parallel 
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Source: Keutzer and Mattson Intel Technology Journal, 2010 

Patterns travel together … informs 

framework design (a pathway for cactus 

is shown here) 

Distributed memory cluster 

and MPP computers Multiprocessors (SMP and NUMA) 



Inference Engine 

Beam Search Iterations 

LVCSR Software Architecture 

Pipe-and-filter 

Graphical Model 

Dynamic 
Programming 

Iterative Refinement 

Pipe and Filter 

Speech 
Feature 

Extractor 

Voice 
Input 

 

 

Speech 
Features 

 
 

 

…
 

Recognition Network 
 

 

 

Acoustic 
Model 

Pronunciation 
Model 

Language 
Model 

MapReduce 

Word 
Sequence 

 

 
I think  

therefore   

I am 

Active State Computation Steps 

LVCSR = Large vocabulary continuous speech recognition. 



Speech Recognition Results 

 Architecture expressed as a 
composition of design patterns 
and implemented as a C++ 
Framework. 
‒ Input: Speech audio waveform  

‒ Output: Recognized word sequences 

 

Scalable HMM based Inference Engine in Large Vocabulary Continuous Speech Recognition, 

Kisun You, Jike Chong, Youngmin Yi, Ekaterina Gonina, Christopher Hughes, Wonyong Sung and Kurt 

Keutzer, IEEE Signal Processing Magazine, March 2010 

 Achieved 11x speedup over sequential version 

 Allows 3.5x faster than real time recognition 

 Our technique is being deployed in a hotline call-center data 
analytics company 
‒ Used to search content, track service quality and provide early detection 

of service issues 

 

 
 
 



Multi-media Speech Recognition 

Read Files 

Initialize data 

structures 

CPU 

GPU 

Backtrack 

Output Results 

Phase 0 

 

 

 

 

Phase 1 

Compute Observation 

Probability 

Phase 2 

Graph Traversal 

Save  

Backtrack Log 

Collect  

Backtrack Info 

Prepare ActiveSet 

Iteration Control Fixed Beam Width 

CHMM GPU ObsProb 

CHMM Format 

CHMM Scoring format 

Prof. Dorothea Kolossa 

Speech Application Domain Expert 

Technische Universität Berlin 

Extended audio-only speech recognition framework to 

enable audio-visual speech recognition (lip reading) 

 

Achieved a 20x speedup in application  

performance compared to a sequential 

version in C++ 

 

The application framework enabled a 

Matlab/Java programmer to effectively 

utilize highly parallel platform 

 Dorothea Kolossa, Jike Chong, Steffen Zeiler, Kurt Keutzer, “Efficient Manycore 

CHMM Speech Recognition for Audiovisual and Multistream Data”, Interspeech 2010.  

Source: K. Keutzer and his research group at UCB, slides from CS194 Spring 2012 
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High level, safe, concurrency through 
high level frameworks 

Low level, risky, hardware details fully 
exposed 



How do we squeeze high performance from 

framework-based applications? 

Bryan Catanzaro, Armando fox, Yunsup Lee, mark Murphy and Kurt Ketuzer of UC Berkeley, Mickael Garland of NVIDIA 

 SEJITS: Scalable, embedded, just in time specialization 

 Code with a high level language (e.g. Python or Ruby) that is mapped 

onto a low level, efficiency language (e.g. OpenMP/C or CUDA).  

 SEJITS system to embed optimized kernels specialized at runtime to 

flatten abstraction overhead and map onto hardware features. 

SEJITS comes 
from Armando 
Fox’s group at UC 
Berkeley. 

Framework 
API 



Turning Patterns expressed as Python 

code into high performance parallel code 
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ASP … a platform to 
write domain specific 

frameworks.   
 

Helps turn design 
patterns into code. 

ASP: SEJITS for Python 



How do these two shapes 
fit together? 

Pretty obvious. 

How do these two shapes fit 
together? Not as obvious when dealing 
with complex, 3D molecular structures. 
 
Why does it matter how molecules 
fit together? Because most biological 
processes involve molecular binding. 

Example Application: Shape Fitting 

19 Source: Henry Gabb, parlab retreat winter 2011 



Shape Fitting by Cartesian Grid 
Correlations 
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Translate/rotate molecules to 
maximize the correlation. 
 
Inefficient: O(N6), N3 additions and 
multiplications for every N3 
translations (α, β, γ). 
 
Solve more efficiently using Fourier 
correlation: O(N3 log N3). 

Source: Henry Gabb, parlab retreat winter 2011 

Project molecules A and B onto a grid and assign values to nodes based on 
locations of atoms. 

B 
A 



Application “Box-and-Arrow” Diagram 

Fourier 

Transform 

Fourier 

Transform 

Molecule A 

Molecule B 

Complex 

Conjugate 

Fourier Correlation 

Done 
Sort 

Geometries 
Yes No 
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Rotate 

Source: Henry Gabb, parlab retreat winter 2011 



Productivity Programmer Responsibilities 
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   for a in range(-1.0, 1.0 + del, del): 

      for b in range(-1.0, 1.0 + del, del): 

         for g in range(-1.0, 1.0 + del, del): 

 

            # ftdock algorithm 

Original loop-based, iterative code: 

The productivity programmer knows 

the body of this loop-nest is 

“embarrassingly parallel” … but there 

is no way a compiler could figure this 

out 

Source: Henry Gabb, parlab retreat winter 2011 



Parallel Design Patterns 

DFT 

Complex 

Conjugate 

Sort 

DFT 
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To expose the most concurrency in a natural way, it was best to recast 

the problem in terms of map-reduce.  

 

i.e.   the productivity programmer is responsible for a good design. 

Source: Henry Gabb, parlab retreat winter 2011 



Productivity Programmer Responsibilities 
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   for a in range(-1.0, 1.0 + del, del): 

      for b in range(-1.0, 1.0 + del, del): 

         for g in range(-1.0, 1.0 + del, del): 

 

            # ftdock algorithm 

   a = b = g = list(range(-1.0, 1.0 + del, del)) 

   geometries = AllCombMap([a, b, g], ftdock, *args) 

Original loop-based, iterative code: 

New Code inspired by the map-reduce pattern:  

Source: Henry Gabb, parlab retreat winter 2011 



SEJITS/FTDock Results 
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• What SEJITS did for FTDock 

• Parallelism exploited though a map-reduce module 

• Mapped FFTW onto the application … with no changes to application 

code. 

• Minimal burden on productivity programmer: 

• Pattern-based design of application 

• Functional programming style 

• Significantly easier development: 

• Original version: 4,700 lines of C and Perl 

• New version: 500 lines of Python 

• Caveat: LOC not necessarily a good measure of productivity 

• Performance (16-core Xeon): 

• Serial: ~24 hours 

• Parallel: ~3 hours 

Source: Henry Gabb, parlab retreat winter 2011 



Incorporating new specializers 

26 Source: M. Driscoll, E. Georgana, P. Koanantakool, 2012 ParLab winter Retreat. 



More Complicated Applications of SEJITS 
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• Complex interfaces to optimized libraries:  

• JIT’ed insertion of FFTW (accommodate APIs, build plans, clean up 

when done) 

• Interface to auto-tuning: 

• Runtime auto-tuning to optimize library routines. 

• Cached so subsequent uses avoid auto-tuning overhead. 

• Family of specializers to support other computational 

patterns: 

• Stencil 

• Graph algorithms 

• Graphical models 

• … and over time we’ll fill in framework elements for all structural and 

computational patterns 



Conclusion 
• Understanding software architecture is how 

we will solve the many core programming 

challenge. 

• An architecture is analogous to a factory … 

a structural arrangement of computational 

elements 
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• We define software architecture in 

terms of a pattern language called 

OPL. 

• Architectural patterns:  

• Structural patterns 

• Computational patterns 

• Parallel programming patterns (PLPP): 

• Algorithm strategy 

• Implementation strategy 

• Parallel execution Patterns 

 

 

 




