
BERKELEY PAR LAB BERKELEY PAR LAB

The Parallel Computing

Laboratory

Krste Asanovic, Ras Bodik,
Jim Demmel, Armando Fox, Tony Keaveny,

Kurt Keutzer, John Kubiatowicz,
Nelson Morgan, Dave Patterson, Koushik Sen,

David Wessel, and Kathy Yelick

UC Berkeley

Microsoft Faculty Summit

Bellevue, WA

July 17, 2012

BERKELEY PAR LAB

Transition to Multicore

Sequential App
Performance

BERKELEY PAR LAB

3

Par Lab Inception: Needed a
Fresh Approach to Parallelism

 Berkeley researchers from many backgrounds
meeting since Feb. 2005 to discuss parallelism
 Krste Asanovic, Eric Brewer, Ras Bodik, Jim Demmel, Kurt Keutzer,

John Kubiatowicz, Dave Patterson, Koushik Sen, Kathy Yelick, …

 Circuit design, computer architecture, massively parallel
computing, computer-aided design, embedded hardware
and software, programming languages, compilers,
scientific programming, and numerical analysis

 Tried to learn from successes in high-performance computing
(LBNL) and parallel embedded (BWRC)

 Led to “Berkeley View” Tech. Report 12/2006 and
new Parallel Computing Laboratory (“Par Lab”)

Goal: To enable most programmers to be productive
writing efficient, correct, portable SW for 100+ cores
& scale as cores increase every 2 years (!)

3

BERKELEY PAR LAB

 Past parallel projects often dominated by hardware

architecture:

 This is the one true way to build computers,

software must adapt to this breakthrough!

 E.g., ILLIAC IV, Thinking Machines CM-2, Transputer,

Kendall Square KSR-1, Silicon Graphics Origin 2000 …

 Or sometimes by programming language:

 This is the one true way to write programs,

hardware must adapt to this breakthrough!

 E.g., Id, Backus Functional Language FP, Occam,

Linda, HPF, Chapel, X10, Fortress …

 Applications usually an afterthought

4

Traditional Parallel Research Project

BERKELEY PAR LAB

Par Lab’s original “bets”

Let compelling applications drive research
agenda

Software platform: data center + mobile client

Identify common programming patterns

Productivity versus efficiency programmers

Autotuning and software synthesis

Build-in correctness + power/performance diagnostics

OS/Architecture support applications, provide flexible
primitives not pre-packaged solutions

FPGA simulation of new parallel architectures: RAMP

Co-located integrated collaborative center

Above all, no preconceived big idea - see what works
driven by application needs.

5 5

BERKELEY PAR LAB

Co-located Collaborative

Center Approach
 60+ students, 8+ faculty in

one shared space

 Faculty in open space, not

in offices

Off-site retreat every 6

months with ~60 outside

visitors (industry sponsors,

and other invited experts)

6

BERKELEY PAR LAB

Par Lab Timeline

7

Initial

Meetings

“Berkeley View”

Techreport

Win UPCRC

Competition

UPCRC

Phase-I

UPCRC

Phase-II

Par Lab

End of

Project

Party!

You are here

BERKELEY PAR LAB

Big Ideas from Par Lab

 Patterns for parallel programming

Communication-avoiding algorithms

 Specializers: Pattern-specific compilers

 Effective composition of parallel modules

8

BERKELEY PAR LAB

9

Dominant Application
Platforms

9

 Laptop/Handheld (“Mobile Client”)

 Par Lab focuses on mobile clients

 Data Center or Cloud (“Cloud”)

 RAD Lab/AMPLab focuses on Cloud

 Both together (“Client+Cloud”)

 ParLab-AMPLab collaborations

BERKELEY PAR LAB

10

Content-Based Image Retrieval
(Kurt Keutzer)

Relevance

Feedback

Image

Database

Query by example

Similarity

Metric

Candidate

Results Final Result

Built around Key Characteristics of personal
databases
 Very large number of pictures (>5K)
 Non-labeled images
 Many pictures of few people
 Complex pictures including people, events, places,

and objects

1000’s of

images

BERKELEY PAR LAB

Health Application: Stroke Treatment
(Tony Keaveny, ME@UCB)

 Stroke treatment time-critical, need
supercomputer performance in hospital

 Goal: 1.5D Fluid-Solid Interaction
analysis of Circle of Willis (3D vessel
geometry + 1D blood flow).

 Based on existing codes for distributed
clusters

11

BERKELEY PAR LAB

12

Parallel Browser
(Ras Bodik)

Readable

Layouts

 Original goal: Desktop-quality
browsing on handhelds (Enabled by

4G networks, better output devices)

 Now: Better development
environment for new mobile-client
applications, merging
characteristics of browsers and
frameworks (Silverlight, Qt, Android)

BERKELEY PAR LAB

layout engine

scene
graph

renderer

parser

multicore selector
matcher

multicore cascade

HTML
CSS

tree
style

template

tree decorated with
style constraints OpenGL Qt Renderer

layout
visitor

multicore
fast tree

library

grammar
specification

ALE synthesizer

Compile Time

Browser Development Stack

MUD language

widget definition

incrementalizer

multicore parser

BERKELEY PAR LAB

14

Music Application
(David Wessel, CNMAT@UCB)

New user interfaces

with pressure-sensitive

multi-touch gestural

interfaces

Programmable virtual instrument

and audio processing

120-channel

speaker array

BERKELEY PAR LAB

Pressure-sensitive multitouch array

120-Channel

Spherical

Speaker Array

Music Software Structure

Audio Processing
& Synthesis

Engine

Filter

Plug-in

Oscillator

Bank

Plug-in

Network
Service

Front-end

GUI
Service

Solid

State

Drive

File
Service

Output Input

Audio Processing

End-to-end Deadline

BERKELEY PAR LAB

16

BERKELEY PAR LAB

Speech: Meeting Diarist

(Nelson Morgan, Gerald Friedland, ICSI/UCB)

 Laptops/ Handhelds at meeting coordinate to create speaker
identified, partially transcribed text diary of meeting

BERKELEY PAR LAB

Meeting Diarist Software

Architecture

17

17

Speech Processing

Solid

State

Drive

File
Service

Network
Service

Browser-Based

Interactive GUI

Winner ACM Multimedia Grand Challenge 2009
 - find best punchlines in Seinfeld episodes
Speedup progress in Par Lab:
2006 0.3x realtime, original code
2008 1.5x realtime, optimized serial code
2010 14.3x realtime, multicore CPU+GPU
2011 250x realtime, pure GPU, from Python
code, changed the field!

BERKELEY PAR LAB

Types of Programming
(or “types of programmer”)

Hardware/OS

Efficiency-Level
(MS in CS) C/C++/FORTRAN

assembler

Java/C# Uses hardware/OS
primitives, builds
programming
frameworks (or apps)

Productivity-Level

Python/Ruby/Lua

Scala

Uses programming
frameworks, writes
application
frameworks (or apps)

Haskell/OCamL/F#

Domain-Level
(No formal CS)

Max/MSP, SQL,
CSS/Flash/Silverlight,
Matlab, Excel

Builds app with DSL
and/or by customizing
app framework

Provides hardware
primitives and OS services

Example Languages Example Activities

18 18

BERKELEY PAR LAB

How to make parallelism visible?

 In a new general-purpose parallel language?

 An oxymoron?

 Won’t get adopted

 Most big applications written in >1 language

 Par Lab is betting on Computational and
Structural Patterns at all levels of
programming (Domain thru Efficiency)

 Patterns provide a good vocabulary for domain experts

 Also comprehensible to efficiency-level experts or
hardware architects

 Lingua franca between the different levels in Par Lab

19 19

BERKELEY PAR LAB

Motifs common across applications

App 1 App 2 App 3

Dense Sparse Graph Trav.

Berkeley View
Motifs

(“Dwarfs”)

20

BERKELEY PAR LAB

21

How do compelling apps relate to 13 motifs?

 Motif (nee “Dwarf”) Popularity
 (Red Hot Blue Cool)

BERKELEY PAR LAB

22

22

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Arbitrary-Static-Task-Graph

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-

Invocation

Puppeteer

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-

Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

Task-Parallelism

Divide and Conquer
Data-Parallelism

Pipeline

Discrete-Event

Geometric-Decomposition

Speculation

SPMD

Data-Par/index-space
Fork/Join

Actors

Distributed-Array

Shared-Data

Shared-Queue

Shared-map

Partitioned Graph

MIMD

SIMD

Parallel Execution Patterns

Concurrent Algorithm Strategy Patterns

Implementation Strategy Patterns

Message-Passing

Collective-Comm.

Transactional memory

Thread-Pool

Task-Graph

Data structure Program structure

Point-To-Point-Sync. (mutual exclusion)

collective sync. (barrier)

Memory sync/fence

Loop-Par.

Task-Queue

Transactions

Thread creation/destruction

Process creation/destruction

Concurrency Foundation constructs (not expressed as patterns)

“Our” Pattern Language (OPL-2010)
(Kurt Keutzer, Tim Mattson)

A = M x V

Refine Towards

Implementation

BERKELEY PAR LAB

Mapping Patterns to Hardware

App 1 App 2 App 3

Dense Sparse Graph Trav.

Multicore GPU “Cloud”

Only a few types of hardware platform

23

BERKELEY PAR LAB

High-level pattern constrains space
of reasonable low-level mappings

(Insert latest OPL chart showing path)

24

BERKELEY PAR LAB

Specializers: Pattern-specific and
platform-specific compilers

Multicore GPU “Cloud”

App 1 App 2 App 3

Dense Sparse Graph Trav.

Allow maximum efficiency and expressibility in
specializers by avoiding mandatory intermediary layers

25

aka. “Stovepipes”

BERKELEY PAR LAB

Algorithm Costs

1. Arithmetic (FLOPS)

2. Communication: moving data between

 levels of a memory hierarchy (sequential case)

 processors over a network (parallel case).

26

CPU

Cache

DRAM

CPU

DRAM

CPU

DRAM

CPU

DRAM

CPU

DRAM

BERKELEY PAR LAB

Communication-Avoiding Algorithms
(Jim Demmel & BEBOP Group)

 Cost of communication >> cost of arithmetic

 True for cost = time, or cost = energy per operation

 Cost gap growing over time

 Goals

 Identify lower bounds on communication required by

widely used algorithms

• Many widely used libraries (eg Sca/LAPACK)

communicate asymptotically more than necessary

 Design new algorithms that attain lower bounds

• Possible for dense and sparse linear algebra, n-body,

…

• Big speedups and energy savings possible

BERKELEY PAR LAB

A few examples of speedups

 Matrix multiplication
 Up to 12x on IBM BG/P for n=8K on 64K cores; 95% less communication

 QR decomposition (used in least squares, data mining, …)
 Up to 8x on 8-core dual-socket Intel Clovertown, for 10M x 10

 Up to 6.7x on 16-proc. Pentium III cluster, for 100K x 200

 Up to 13x on Tesla C2050 / Fermi, for 110k x 100

 Up to 4x on Grid of 4 cities (Dongarra, Langou et al)

 “infinite speedup” for out-of-core on PowerPC laptop

• LAPACK thrashed virtual memory, didn’t finish

 Eigenvalues of band symmetric matrices
 Up to 17x on Intel Gainestown, 8 core, vs MKL 10.0 (up to 1.9x sequential)

 Iterative sparse linear equations solvers (GMRES)
 Up to 4.3x on Intel Clovertown, 8 core

 N-body (direct particle interactions with cutoff distance)
 Up to 10x on Cray XT-4 (Hopper), 24K particles on 6K procs.

28

BERKELEY PAR LAB

Recent Prizes for CA Work

 SIAM Linear Algebra Prize 2012, for best paper

in previous 3 years, deriving lower bounds

 SPAA’11 Best Paper Award, for Strassen lower

bounds

 EuroPar’11 Distinguished Paper Award, for

asymptotically faster “2.5D” matmul and LU

Citation in 2012 DOE Budget Request …

BERKELEY PAR LAB

“New Algorithm Improves Performance and Accuracy on Extreme-

Scale Computing Systems. On modern computer architectures,

communication between processors takes longer than the

performance of a floating point arithmetic operation by a given

processor. ASCR researchers have developed a new method,

derived from commonly used linear algebra methods, to minimize

communications between processors and the memory

hierarchy, by reformulating the communication patterns

specified within the algorithm. This method has been

implemented in the TRILINOS framework, a highly-regarded suite of

software, which provides functionality for researchers around the

world to solve large scale, complex multi-physics problems.”

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific

Computing Research (ASCR), pages 65-67.

President Obama cites Communication-Avoiding
Algorithms in the FY 2012 Department of Energy Budget

Request to Congress:

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, Demmel)

“Tall-Skinny” QR (Grigori, Hoemmen, Langou, Demmel)

BERKELEY PAR LAB

Graph Algorithms
(Scott Beamer)

New algorithm for Breadth-First Search

Highest single-node performance in November

2011, Graph500, using Intel Xeon E7-8870

(Mirasol)

 #15: BlueGene 2048 cores 6.93 GTEPS

 #16: Jaguar 1024 cores 6.26 GTEPS

 #17: Mirasol 40 cores 5.12 GTEPS

 #18: Blacklight 512 cores 4.45 GTEPS

 #19: Todi 176 TESLA GPUs 3.05 GTEPS

 #20: Convey 4 FPGAs 1.76 GTEPS

31

BERKELEY PAR LAB

32

Autotuning for Code Generation
(Demmel, Yelick)

Search space for

block sizes

(dense matrix):

• Axes are block

 dimensions

• Temperature is

 speed

 Problem: generating optimized code is like searching for
needle in haystack; use computers rather than humans

Auto-tuning

Auto-

parallelization

serial

reference

OpenMP

Comparison

Auto-NUMA

 Auto-tuners approach: program
generates optimized code and
data structures for a “motif”
(~kernel) mapped to some
instance of a family of
architectures (e.g., x86 multicore)

 Use empirical measurement to
select best performing.

 ParLab autotuners for stencils
(e.g., images), sparse matrices,
particle/mesh, collectives (e.g.,
“reduce”), …

32

BERKELEY PAR LAB

SEJITS: “Selective, Embedded,

Just-In Time Specialization” (Fox)

 SEJITS bridges productivity and efficiency layers through

specializers embedded in modern high-level productivity

language (Python, Ruby, …)

 Embedded “specializers” use language facilities to map

high-level pattern to efficient low-level code (at run time,

install time, or development time)

 Specializers can incorporate/package autotuners

Two ParLab SEJITS projects:

 Copperhead: Data-parallel subset of Python, development

continuing at NVIDA

 Asp: “Asp is SEJITS in Python” general specializer

framework

 Provide functionality common across different specializers

33

BERKELEY PAR LAB

.py

OS/HW

f() h()

Specializer

.c

P
L
L
 I

n
te

rp

Productivity app

.so

cc/ld

$

SEJITS Overview

Selective

Embedded

JIT

SEJITS
Specialization

BERKELEY PAR LAB

Asp: Who Does What?

Application

Specializer

Asp core

 Kernel
Python

AST

Target

AST

Asp

Module

Utilities

Compiled

libraries

Kernel

call &

Input data

Results

App author

(PLL)

Specializer author

(ELL)

Asp

team

3rd party

libraries

Domain-Specific

Transforms Utilities

BERKELEY PAR LAB

Composition

 All applications built as a hierarchy of modules,

not just one kernel

36

Structural patterns describe the common forms

of composing sub-computations:
E.g., task graph, pipelines, agent&repository

Application

Module 3

Module 2 Module 1

BERKELEY PAR LAB

Effective Parallel Composition

Data format/layout: Must translate between data

formats or layouts expected by different components

Synchronization: Must correctly synchronize data

passing between or shared by multiple components

Resource management: Must share hardware

resources to execute components in parallel

37

BERKELEY PAR LAB

38

OS-multiplexed

Efficient Parallel Composition of

Libraries is Hard

Gaming

App

Example

Core 0 Core 1 Core 2 Core 3

Libraries compete unproductively for resources!

BERKELEY PAR LAB

39

App 2

“Harts”: Hardware Threads

A Better Resource Abstraction

App 1

Virtualized

Threads

 Merged resource and

computation abstraction.

OS

0 1 2 3

Hardware

App1

OS

0 1 2 3

Hardware

Harts
(HW Thread Contexts)

App2

 More accurate

resource abstraction.

 Let apps provide own

computation abstractions

Hardware Partitions

BERKELEY PAR LAB

Lithe: “Liquid Thread

Environment”

Lithe is an ABI to allow application components to

co-operatively share hardware threads.

Each component is free to map computational to

hardware threads in any way they see fit

 No mandatory thread or task abstractions

Components request but cannot demand harts, and

must yield harts when blocked or finished with task

40

BERKELEY PAR LAB

Tessellation OS: Space-Time Partitioning

+ 2-Level Scheduling (Kubiatowicz)

1st level: OS determines

coarse-grain allocation of

resources to jobs over space

and time

2nd level: Application schedules

component tasks onto

available “harts” (hardware

thread contexts) using Lithe

Time

S
p

a
c
e

2nd-level

Scheduling

Address Space
A

Address Space
B T
a

s
k

Tessellation Kernel
(Partition Support)

CPU

L1

L2
Bank

DRAM

DRAM & I/O Interconnect

L1 Interconnect

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM
41

BERKELEY PAR LAB

Resource Management using Convex

Optimization (Sarah Bird, Burton Smith)

 La = RUa(r(0,a), r(1,a), …, r(n-1,a))

La

Pa(La)

Continuously
Minimize

(subject to restrictions
on the total amount of

resources)

 Lb = RUb(r(0,b), r(1,b), …, r(n-1,b))

 Lb

Pb(Lb)

Penalty Function
Reflects the app’s

importance

Convex Surface
Performance Metric (L), e.g., latency

Resource Utility Function
Performance as function of

resources

 Each process receives a vector of basic resources dedicated to it

 e.g., fractions of cores, cache slices, memory pages, bandwidth

 Allocate minimum for QoS requirements

 Allocate remaining to meet some system-level objective

 e.g., best performance, lowest energy, best user experience

QoS Req.

BERKELEY PAR LAB

Par Lab Stack Summary

Organize software around parallel patterns

 Maximize reuse since patterns common across

domains

 Each pattern implemented with efficient algorithms

packaged as SEJITS specializers using autotuners

 Programmer composes functionality at high-level

using productivity language

 System composes resource usage at low-level using

2-level scheduling

 Tessellation OS at coarse-grain

 Lithe user-level scheduler ABI at fine-grain

43

BERKELEY PAR LAB

Par Lab Stack Overview

44

Lithe User-Level Scheduling ABI

Tessellation OS

Hardware Resources (Cores, Cache/Local Store, Bandwidth)

Module 1

Scheduler

TBB

Scheduler

Efficiency

Level Code
TBB Code

OpenMP

Scheduler

Legacy OpenMP

Application 1

Module 3

Module 2 Module 1

Application 2

BERKELEY PAR LAB

Future Architectures?

What about GPUs versus CPUs?

 These architectures are closely related, and

converging.

 Both have multiple multithreaded cores each with

many SIMD lanes

 original vision was “manycore” – more accurate

to say future is “manylane”.

Most of our techniques can be applied to both

45

BERKELEY PAR LAB

Par Lab Architecture Research

 Focus on supporting application and OS needs:

 Hardware partitioning support

 Performance counters

 High-performance FPGA-based simulators

New architecture ideas:

 New data-parallel execution engines

 Hardware+software managed memory hierarchy

 Specialized accelerators (e.g., graph machines)

 Extensive development of VLSI flow to allow real

layout of various data-parallel accelerators

 Accurate cycle time, area, energy

46

BERKELEY PAR LAB

RAMP Gold

Rapid accurate simulation of
manycore architectural ideas
using FPGAs

Initial version models 64 cores
of SPARC v8 with shared
memory system on $750 board

Hardware FPU, MMU, boots our
OS and Par Lab stack!

 Cost
Performance

(MIPS)
Time per 64 core

simulation

Software
Simulator

$2,000 0.1 - 1 250 hours

RAMP Gold $2,000 + $750 50 - 100 1 hour

47

BERKELEY PAR LAB

Par Lab Funding

Research supported by Microsoft (Award

#024263) and Intel (Award #024894) funding

and by matching funding by U.C. Discovery

(Award #DIG07-10227).

 Additional support comes from Par Lab affiliates

National Instruments, NEC, Nokia, NVIDIA,

Samsung, and Oracle/Sun.

48

BERKELEY PAR LAB

Questions?

49

