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Par Lab Inception: Needed a 
Fresh Approach to Parallelism 

 Berkeley researchers from many backgrounds 
meeting since Feb. 2005 to discuss parallelism 
 Krste Asanovic, Eric Brewer, Ras Bodik, Jim Demmel, Kurt Keutzer, 

John Kubiatowicz, Dave Patterson, Koushik Sen, Kathy Yelick, … 

 Circuit design, computer architecture, massively parallel 
computing, computer-aided design, embedded hardware  
and software, programming languages, compilers,  
scientific programming, and numerical analysis 

 Tried to learn from successes in high-performance computing 
(LBNL) and parallel embedded (BWRC)  

 Led to “Berkeley View” Tech. Report 12/2006 and 
new Parallel Computing Laboratory (“Par Lab”) 

Goal: To enable most programmers to be productive 
writing efficient, correct, portable SW for 100+ cores 
& scale as cores increase every 2 years (!) 
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  Past parallel projects often dominated by hardware 

architecture: 

  This is the one true way to build computers, 

software must adapt to this breakthrough! 

 E.g., ILLIAC IV, Thinking Machines CM-2, Transputer,  

Kendall Square KSR-1, Silicon Graphics Origin 2000 … 

  Or sometimes by programming language: 

  This is the one true way to write programs, 

hardware must adapt to this breakthrough! 

 E.g., Id, Backus Functional Language FP, Occam, 

Linda, HPF, Chapel, X10, Fortress … 

  Applications usually an afterthought 
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Traditional Parallel Research Project 
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Par Lab’s original “bets” 

Let compelling applications drive research 
agenda 

Software platform: data center + mobile client 

Identify common programming patterns 

Productivity versus efficiency programmers 

Autotuning and software synthesis 

Build-in correctness + power/performance diagnostics 

OS/Architecture support applications, provide flexible 
primitives not pre-packaged solutions 

FPGA simulation of new parallel architectures: RAMP 

Co-located integrated collaborative center 

Above all, no preconceived big idea - see what works 
driven by application needs. 
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Co-located Collaborative 

Center Approach 
 60+ students, 8+ faculty in 

one shared space 

 Faculty in open space, not 

in offices 

Off-site retreat every 6 

months with ~60 outside 

visitors (industry sponsors, 

and other invited experts) 
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Par Lab Timeline 
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Initial 

Meetings 

“Berkeley View” 

Techreport 

Win UPCRC 

Competition 

UPCRC 

Phase-I 

UPCRC 

Phase-II 

Par Lab 

End of 

Project 

Party! 

You are here 
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Big Ideas from Par Lab 

 Patterns for parallel programming 

Communication-avoiding algorithms 

 Specializers: Pattern-specific compilers 

 Effective composition of parallel modules 
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Dominant Application  
Platforms 
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 Laptop/Handheld (“Mobile Client”) 

 Par Lab focuses on mobile clients 

 Data Center or Cloud (“Cloud”) 

 RAD Lab/AMPLab focuses on Cloud 

 Both together (“Client+Cloud”) 

 ParLab-AMPLab collaborations 
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Content-Based Image Retrieval 
(Kurt Keutzer)  

Relevance 

Feedback 

Image 

Database 

Query by example 

Similarity 

Metric 

Candidate 

Results Final Result 

Built around Key Characteristics of personal 
databases 
 Very large number of pictures (>5K) 
 Non-labeled images 
 Many pictures of few people 
 Complex pictures including people, events, places, 

and objects 
 

 

1000’s of 

images 
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Health Application: Stroke Treatment 
(Tony Keaveny, ME@UCB) 

 Stroke treatment time-critical, need 
supercomputer performance in hospital 

 Goal: 1.5D Fluid-Solid Interaction 
analysis of Circle of Willis (3D vessel 
geometry + 1D blood flow). 

 Based on existing codes for distributed 
clusters 
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Parallel Browser  
(Ras Bodik) 

Readable 

Layouts 

 Original goal: Desktop-quality 
browsing on handhelds (Enabled by 

4G networks, better output devices) 

 Now: Better development 
environment for new mobile-client 
applications, merging 
characteristics of browsers and 
frameworks (Silverlight, Qt, Android) 
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layout engine 

scene  
graph 

renderer 

parser 

multicore selector 
matcher 

multicore cascade 

HTML 
CSS 

tree 
style 

template 

tree decorated with 
style constraints OpenGL Qt Renderer 

layout  
visitor 

multicore 
fast tree  

library 

grammar  
specification 

ALE synthesizer 

Compile Time 

Browser Development Stack 

MUD language 

widget definition 

incrementalizer 

multicore parser 
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Music Application 
(David Wessel, CNMAT@UCB) 

New user interfaces 

with pressure-sensitive 

multi-touch gestural 

interfaces 

Programmable virtual instrument 

and audio processing 

120-channel 

speaker array 
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Pressure-sensitive multitouch array 

120-Channel 

Spherical 

Speaker Array 

Music Software Structure 

Audio Processing 
& Synthesis 

Engine 

Filter 

Plug-in 

Oscillator 

Bank 

Plug-in 

Network 
Service 

Front-end 

GUI 
Service 

Solid 

State 

Drive 

File 
Service 

Output Input 

Audio Processing 

End-to-end Deadline 
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BERKELEY PAR LAB 

Speech: Meeting Diarist 

(Nelson Morgan, Gerald Friedland, ICSI/UCB) 

 Laptops/ Handhelds at meeting coordinate to create speaker 
identified, partially transcribed text diary of meeting 
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Meeting Diarist Software 

Architecture 
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Speech Processing 

Solid 

State 

Drive 

File 
Service 

Network 
Service 

Browser-Based 

Interactive GUI 

Winner ACM Multimedia Grand Challenge 2009 
 - find best punchlines in Seinfeld episodes 
Speedup progress in Par Lab: 
2006    0.3x realtime, original code 
2008    1.5x realtime, optimized serial code 
2010  14.3x realtime, multicore CPU+GPU 
2011 250x realtime, pure GPU, from Python 
code, changed the field! 
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Types of Programming 
(or “types of programmer”) 

Hardware/OS 

Efficiency-Level 
(MS in CS) C/C++/FORTRAN 

assembler 

Java/C# Uses hardware/OS 
primitives, builds 
programming 
frameworks (or apps) 

Productivity-Level 

Python/Ruby/Lua 

Scala 

Uses programming 
frameworks, writes 
application 
frameworks (or apps) 
 

Haskell/OCamL/F# 

Domain-Level 
(No formal CS) 

Max/MSP, SQL, 
CSS/Flash/Silverlight, 
Matlab, Excel 

Builds app with DSL 
and/or by customizing 
app framework 

Provides hardware 
primitives and OS services 

Example Languages Example Activities 
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How to make parallelism visible? 

 In a new general-purpose parallel language? 

 An oxymoron? 

 Won’t get adopted 

 Most big applications written in >1 language 

 Par Lab is betting on Computational and 
Structural Patterns at all levels of 
programming (Domain thru Efficiency) 

 Patterns provide a good vocabulary for domain experts 

 Also comprehensible to efficiency-level experts or 
hardware architects 

 Lingua franca between the different levels in Par Lab 
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Motifs common across applications 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Berkeley View 
Motifs 

(“Dwarfs”) 
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How do compelling apps relate to 13 motifs? 

  

  Motif (nee “Dwarf”) Popularity  
  (Red Hot  Blue Cool) 
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Graph-Algorithms 

Dynamic-Programming 

Dense-Linear-Algebra 

Sparse-Linear-Algebra 

Unstructured-Grids 

Structured-Grids 

Model-View-Controller  

Iterative-Refinement 

Map-Reduce 

Layered-Systems 

Arbitrary-Static-Task-Graph 

Pipe-and-Filter 

Agent-and-Repository 

Process-Control 

Event-Based/Implicit-

Invocation 

Puppeteer  

Graphical-Models 

Finite-State-Machines 

Backtrack-Branch-and-

Bound 

N-Body-Methods 

Circuits 

Spectral-Methods 

Monte-Carlo 

Applications 

Structural Patterns  Computational Patterns 

Task-Parallelism 

Divide and Conquer 
Data-Parallelism 

Pipeline 

Discrete-Event  

Geometric-Decomposition 

Speculation 

SPMD 

Data-Par/index-space 
Fork/Join 

Actors 

Distributed-Array 

Shared-Data 

Shared-Queue 

Shared-map 

Partitioned Graph 

MIMD 

SIMD 

Parallel Execution Patterns 

Concurrent Algorithm Strategy Patterns 

Implementation Strategy Patterns 

Message-Passing 

Collective-Comm. 

Transactional memory 

Thread-Pool 

Task-Graph 

Data structure Program structure 

Point-To-Point-Sync. (mutual exclusion) 

collective sync. (barrier) 

Memory sync/fence 

Loop-Par. 

Task-Queue 

Transactions 

Thread creation/destruction 

Process creation/destruction 

 

Concurrency Foundation constructs (not expressed as patterns) 

“Our” Pattern Language (OPL-2010) 
(Kurt Keutzer, Tim Mattson) 

A = M x V 

Refine Towards 

Implementation 
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Mapping Patterns to Hardware 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Multicore GPU “Cloud” 

Only a few types of hardware platform 
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High-level pattern constrains space 
of reasonable low-level mappings 

(Insert latest OPL chart showing path) 
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Specializers: Pattern-specific and 
platform-specific compilers 

Multicore GPU “Cloud” 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Allow maximum efficiency and expressibility in 
specializers by avoiding mandatory intermediary layers 

25 

aka. “Stovepipes” 
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Algorithm Costs 

1. Arithmetic (FLOPS) 

2. Communication: moving data between  

 levels of a memory hierarchy (sequential case)  

 processors over a network (parallel case).  
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CPU 

Cache 

DRAM 

CPU 

DRAM 

CPU 

DRAM 

CPU 

DRAM 

CPU 

DRAM 
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Communication-Avoiding Algorithms 
(Jim Demmel & BEBOP Group) 

 Cost of communication >> cost of arithmetic 

 True for cost = time, or cost = energy per operation 

 Cost gap growing over time 

 Goals 

 Identify lower bounds on communication required by 

widely used algorithms 

• Many widely used libraries (eg Sca/LAPACK) 

communicate asymptotically more than necessary 

 Design new algorithms that attain lower bounds 

• Possible for dense and sparse linear algebra, n-body, 

… 

• Big speedups and energy savings possible 
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A few examples of speedups 

 Matrix multiplication 
 Up to 12x on IBM BG/P for n=8K on 64K cores; 95% less communication 

 QR decomposition (used in least squares, data mining, …) 
 Up to 8x on 8-core dual-socket Intel Clovertown, for 10M x 10 

 Up to 6.7x on 16-proc. Pentium III cluster, for 100K x 200 

 Up to 13x on Tesla C2050 / Fermi, for 110k x 100 

 Up to 4x on Grid of 4 cities (Dongarra, Langou et al) 

 “infinite speedup” for out-of-core on PowerPC laptop  

• LAPACK thrashed virtual memory, didn’t finish 

 Eigenvalues of band symmetric matrices 
 Up to 17x on Intel Gainestown, 8 core, vs MKL 10.0 (up to 1.9x sequential) 

 Iterative sparse linear equations solvers (GMRES) 
 Up to 4.3x on Intel Clovertown, 8 core 

 N-body (direct particle interactions with cutoff distance) 
 Up to 10x on Cray XT-4 (Hopper), 24K particles on 6K procs. 
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Recent Prizes for CA Work 

 SIAM Linear Algebra Prize 2012, for best paper 

in previous 3 years, deriving lower bounds 

 SPAA’11 Best Paper Award, for Strassen lower 

bounds 

 EuroPar’11 Distinguished Paper Award, for 

asymptotically faster “2.5D” matmul and LU 

Citation in 2012 DOE Budget Request … 
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“New Algorithm Improves Performance and Accuracy on Extreme-

Scale Computing Systems. On modern computer architectures, 

communication between processors takes longer than the 

performance of a floating point arithmetic operation by a given 

processor. ASCR researchers have developed a new method, 

derived from commonly used linear algebra methods, to minimize 

communications between processors and the memory 

hierarchy, by reformulating the communication patterns 

specified within the algorithm. This method has been 

implemented in the TRILINOS framework, a highly-regarded suite of 

software, which provides functionality for researchers around the 

world to solve large scale, complex multi-physics problems.” 
 

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific 

Computing Research (ASCR), pages 65-67. 

President Obama cites Communication-Avoiding 
Algorithms in the FY 2012 Department of Energy Budget 

Request to Congress: 

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, Demmel) 

“Tall-Skinny” QR (Grigori, Hoemmen, Langou,  Demmel) 
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Graph Algorithms 
(Scott Beamer) 

New algorithm for Breadth-First Search 

Highest single-node performance in November 

2011, Graph500, using Intel Xeon E7-8870 

(Mirasol) 

 #15: BlueGene 2048 cores        6.93 GTEPS 

 #16: Jaguar      1024 cores        6.26 GTEPS 

 #17: Mirasol         40 cores        5.12 GTEPS 

 #18: Blacklight   512 cores         4.45 GTEPS 

 #19: Todi    176 TESLA GPUs   3.05 GTEPS 

 #20: Convey   4 FPGAs         1.76 GTEPS 
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Autotuning for Code Generation 
(Demmel, Yelick) 

Search space for 

block sizes  

(dense matrix): 

• Axes are block                                 

 dimensions 

• Temperature is                    

 speed 

 Problem: generating optimized code is like searching for 
needle in haystack; use computers rather than humans 

 

 

 

 

 

 

 

 
 

Auto-tuning 

Auto- 

parallelization 

serial 

reference 

OpenMP 

Comparison 

Auto-NUMA 

 Auto-tuners approach: program 
generates optimized code and 
data structures for a “motif” 
(~kernel) mapped to some 
instance of a family of 
architectures (e.g., x86 multicore) 

 Use empirical measurement to 
select best performing. 

 ParLab autotuners for stencils 
(e.g., images), sparse matrices, 
particle/mesh, collectives (e.g., 
“reduce”), … 
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SEJITS: “Selective, Embedded, 

Just-In Time Specialization” (Fox) 

  SEJITS bridges productivity and efficiency layers through 

specializers embedded in modern high-level productivity 

language (Python, Ruby, …) 

 Embedded “specializers” use language facilities to map 

high-level pattern to efficient low-level code (at run time, 

install time, or development time) 

 Specializers can incorporate/package autotuners 

Two ParLab SEJITS projects: 

 Copperhead: Data-parallel subset of Python, development 

continuing at NVIDA 

 Asp: “Asp is SEJITS in Python” general specializer 

framework 

 Provide functionality common across different specializers 
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.py 

OS/HW 

f() h() 

Specializer 

.c 

P
L
L
 I

n
te

rp
 

Productivity app 

.so 

cc/ld 

$ 

SEJITS Overview 

Selective 

Embedded 

JIT 

SEJITS 
Specialization 
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Asp: Who Does What? 

Application 

 

 

 

 

Specializer 

 

 

 

Asp core 

 

 

 

 

 

 Kernel 
Python 

AST 

Target 

AST 

Asp 

Module 

Utilities 

Compiled 

libraries 

Kernel 

call & 

Input data 
 

Results 

App author 

(PLL) 

Specializer author 

(ELL) 

Asp 

team 

3rd party 

libraries 

Domain-Specific 

Transforms Utilities 
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Composition 

 All applications built as a hierarchy of modules, 

not just one kernel 

36 

Structural patterns describe the common forms 

of composing sub-computations: 
E.g., task graph, pipelines, agent&repository 

Application 

Module 3 

Module 2 Module 1 
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Effective Parallel Composition 

Data format/layout: Must translate between data 

formats or layouts expected by different components 

Synchronization: Must correctly synchronize data 

passing between or shared by multiple components 

Resource management: Must share hardware 

resources to execute components in parallel 
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OS-multiplexed 

Efficient Parallel Composition of 

Libraries is Hard 

Gaming 

App 

Example 

Core 0 Core 1 Core 2 Core 3 

Libraries compete unproductively for resources! 
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App 2 

“Harts”: Hardware Threads 

A Better Resource Abstraction 

App 1 

Virtualized 

Threads 

 Merged resource and  

computation abstraction.  

OS 

0 1 2 3 

Hardware 

App1 

OS 

0 1 2 3 

Hardware 

Harts 
(HW Thread Contexts) 

App2 

 More accurate 

resource abstraction.  

 Let apps provide own 

computation abstractions 

Hardware Partitions 
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Lithe: “Liquid Thread 

Environment” 

Lithe is an ABI to allow application components to 

co-operatively share hardware threads. 

Each component is free to map computational to 

hardware threads in any way they see fit 

 No mandatory thread or task abstractions 

Components request but cannot demand harts, and 

must yield harts when blocked or finished with task 
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Tessellation OS: Space-Time Partitioning 

+ 2-Level Scheduling (Kubiatowicz) 

1st level: OS determines 

coarse-grain allocation of 

resources to jobs over space 

and time 

2nd level: Application schedules 

component tasks onto 

available “harts” (hardware 

thread contexts) using Lithe 

Time 

S
p

a
c
e
 

2nd-level 

Scheduling 

Address Space 
A 

Address Space 
B T
a

s
k
 

Tessellation Kernel 
(Partition Support) 

CPU 

L1 

L2 
Bank 

DRAM 

DRAM & I/O Interconnect 

L1 Interconnect 

CPU 

L1 

L2 
Bank 

DRAM 

CPU 

L1 

L2 
Bank 

DRAM 

CPU 

L1 

L2 
Bank 

DRAM 

CPU 

L1 

L2 
Bank 

DRAM 

CPU 

L1 

L2 
Bank 

DRAM 
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Resource Management using Convex 

Optimization (Sarah Bird, Burton Smith) 

 La = RUa(r(0,a), r(1,a), …, r(n-1,a))
 

La
 

Pa(La) 

Continuously  
Minimize 

(subject to restrictions 
on the total amount of 

resources) 

 Lb = RUb(r(0,b), r(1,b), …, r(n-1,b))
 

 Lb
 

Pb(Lb) 

Penalty Function 
Reflects the app’s 

importance 

Convex Surface 
Performance Metric (L),  e.g., latency 

Resource Utility Function 
Performance as function of 

resources 

 Each process receives a vector of basic resources dedicated to it 

 e.g., fractions of cores, cache slices, memory pages, bandwidth 

 Allocate minimum for QoS requirements 

 Allocate remaining to meet some system-level objective 

 e.g., best performance, lowest energy, best user experience 

 

QoS Req. 
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Par Lab Stack Summary 

Organize software around parallel patterns 

 Maximize reuse since patterns common across 

domains 

 Each pattern implemented with efficient algorithms 

packaged as SEJITS specializers using autotuners 

 Programmer composes functionality at high-level 

using productivity language 

 System composes resource usage at low-level using 

2-level scheduling 

 Tessellation OS at coarse-grain 

 Lithe user-level scheduler ABI at fine-grain 
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Par Lab Stack Overview 

44 

Lithe User-Level Scheduling ABI 

Tessellation OS 

Hardware Resources (Cores, Cache/Local Store, Bandwidth) 

Module 1 

Scheduler 

TBB 

Scheduler 

Efficiency 

Level Code 
TBB Code 

OpenMP 

Scheduler 

Legacy OpenMP 

Application 1 

Module 3 

Module 2 Module 1 

Application 2 
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Future Architectures? 

What about GPUs versus CPUs? 

 These architectures are closely related, and 

converging. 

 Both have multiple multithreaded cores each with 

many SIMD lanes 

 original vision was “manycore” – more accurate 

to say future is “manylane”. 

Most of our techniques can be applied to both 
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Par Lab Architecture Research 

 Focus on supporting application and OS needs: 

 Hardware partitioning support 

 Performance counters 

 High-performance FPGA-based simulators 

New architecture ideas: 

 New data-parallel execution engines 

 Hardware+software managed memory hierarchy 

 Specialized accelerators (e.g., graph machines) 

 Extensive development of VLSI flow to allow real 

layout of various data-parallel accelerators 

 Accurate cycle time, area, energy 
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RAMP Gold 

Rapid accurate simulation of 
manycore architectural ideas 
using FPGAs 

Initial version models 64 cores  
of SPARC v8 with shared  
memory system on $750 board 

Hardware FPU, MMU, boots our 
OS and Par Lab stack! 

 Cost 
Performance 

(MIPS) 
Time per 64 core 

simulation 

Software 
Simulator 

$2,000 0.1 - 1 250 hours 

RAMP Gold $2,000 + $750 50 - 100 1 hour    
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Par Lab Funding 

Research supported by Microsoft (Award 

#024263) and Intel (Award #024894) funding 

and by matching funding by U.C. Discovery 

(Award #DIG07-10227). 

 Additional support comes from Par Lab affiliates 

National Instruments, NEC, Nokia, NVIDIA, 

Samsung, and Oracle/Sun. 
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Questions? 
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