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Summary report, September:  

This report summarizes the work conducted under the 1 year Surface initiative project. Our goal was to explore 

the value proposition of adapting pen-centric mathematical sketching techniques to a hybrid pen and multi-

touch environment based on a Microsoft Surface.  Our results were positively received during evaluation as 

participants commented that our Hands-On Math prototype not only made interacting with math fun and 

efficient, but also provided value for note-taking tasks in general.  This work has also been accepted as a full 

paper at UIST 2010. 

 Project Background:  

Having developed pen-based interfaces for over a decade including pen-centric systems for mathematics, we 

believed that the pen was overloaded for many tasks which could naturally be off-loaded onto touch 

interfaces.  Our aim with this project was to explore three areas, including: 1) technical solutions for sensing 

pen input on a Surface; 2) the design of a hardware abstraction layer API to unify pen and multi-touch input 

across multiple platforms; and 3) multi-touch techniques for exposing additional CAS (Computer Algebra 

System) functionality that complement our existing pen-centric math sketching UI.  Our expectation was that 

such a hybrid system would provide a non-trivial example of the potential synergistic benefits of pen and multi-

touch computing. 

 

 

  



Work product: Pen Sensing on Surface + API 

 

We evaluated several technologies for recognizing pen input on a Surface, including: a light pen, 2 ultrasonic 

pens, and an Anoto pen.   Of these solutions, the light pen was the easiest to use because it required no 

calibration or additional sensors, although its performance would be insufficient for a real production system. 

 

Anoto: Collaborating with Dr. Michael Haller of the Upper Austria University of Applied 

Sciences, Media Technology and Design/Digital Media, we determined that although the Anoto pen can 

provide the most accurate input at the highest sampling rate, it was not feasible for use on a Surface because 

the IR light that is emitted by the surface interferes with the IR sensing of the Anoto pen.  Using the Anoto pen 

with our software on a front projected wall or surface produced excellent results.  

 

 

Ultrasonic: We used both an eBeam ultrasonic pen and an 

IOGear pen (Figure 1). The eBeam pen is designed to generate 

native mouse input across large surfaces while the IOGear pen 

produces mouse input at a much higher sampling rate but is 

designed for 8.5”x11” surfaces and thus provides severely 

degraded input beyond this footprint.  Both of these pens were 

able to provide mouse input that was robustly disambiguated 

from touch input, but both suffered from calibration issues where 

samples could be off by as much as an inch.  In addition, these techniques support only a single pen and are 

subject to line-of-sight issues with receivers that must be mounted on the Surface. 

 

Lightpens: We used both a Microsoft supplied IR light pen prototype and a 

commercial IR light pen (1). Both of these pens were comparable with the 

commercial pen being physically more robust, but the Microsoft pen being better 

tuned for the Surface with a felt tip and better balance.  In both cases, light pen 

input was largely separable from touch input although false positive and negative 

recognitions occurred around 1% of the time.  In addition, the sampling rate of 

these devices was rather low and limited by the camera speed to about 30fps 

maximum.  When users were allowed to write mathematical expressions on the 

surface with either light pen, we noticed that the size of their writing was 

much larger than with pen and paper and that they held the light pen at 

Figure 1. eBeam and IOGear pens 

Figure 2. Commercial light pen 



awkward angles to ensure that the tip-switch would activate.  These problems were acceptable under demo 

conditions, but would have been highly undesirable in a product. 

 

API support for pens, multi-touch, and desktop mouse/stylus events 

 

To leverage our previous work in pen-based mathematics, we chose to build our prototype system using the 

starPad SDK.  The starPad SDK is a toolkit developed at Brown under Microsoft’s sponsorship which aims to 

simplify the development of gesture-based applications, particularly those which require recognition of 

handwritten mathematics.  In addition, we chose to use the Microsoft Surface SDK because of its rich support 

for multi-touch interactions. 

 

However, the Surface SDK introduces a new event type, ContactEvents, but does not generate either Mouse or 

Stylus events.  Thus, any interaction libraries that respond to the Mouse or Stylus, such as those included in the 

starPad SDK, are not directly usable through the Surface SDK.  To remedy this in a way that would facilitate 

component reuse across desktop, tablet and the Surface, we extended an input abstraction framework, 

provided by Michael Haller, to map Contact, Mouse and Stylus events to our a generic class of Point events.  In 

this way, a widget can be written once to accept Point events and then it will work in a mouse, pen or touch 

environment without modification.  At a higher level, we also extended the starPad SDK to provide interaction 

templates for touch-activated pen gestures and for a range of multi-touch gestures.  

 

All of the code written for the Hands-On Math system is also part of the starPad SDK.  A SurfaceLib within the 

starPad SDK contains classes corresponding to each of the interaction techniques used in the system, such as a 

PalmPrint, PieMenu, and several TAP gestures.  

 



Work Product 2 - rich multi-touch and pen math application  
 

The major focus of our research was to create a 

novel driving application a la Fred Brooks, Hands-On 

Math, that would showcase the Surface’s unique 

qualities for improving mathematical sketching.  Our 

approach to this system involved not just targeting 

interactions that specifically operated on 

mathematical expressions, but rather considered an 

end-to-end study process.  The notion was to 

support workflows that involved reading, creating, 

and annotating documents within the unified space 

of a single pannable virtual desktop.  To support the 

broad functionality required, we developed several 

novel input techniques to evaluate their individual 

potential and their value as part of a complete 

system. We hypothesize that the impact of such a 

system will be that students of all ages will not only 

work more efficiently, but will also gain deeper insights since the machinations of a CAS system are exposed as 

tangible, hopefully intuitive, direct manipulations. 

 

Thus, the specific contributions that we made include:  

 The design of a virtual paper/CAS hybrid prototype that attempts to expose CAS tools fluidly as bimanual pen 

and touch operations (Figure 2).  

 The design of several synergistic pen and touch techniques that collectively comprise a functionally rich page-

based system capable of supporting domain users performing representative tasks (Error! Reference source 

not found.1). 

 A qualitative pilot evaluation and usability discussion of the prototype system as a whole, and the novel 

bimanual pen and touch techniques developed for it 

 
Figure 2. Math transformation. a) Dragging -x2 across the equality. b) Result with terms highlighted. c) Dragging 

the blue x (from 2x) across other right-hand side terms factors it and interactively updates the result below.  

d) Squeezing x2/x simplifies it. e) The final expression.  

 

Figure 1. Document and note pages showing recognized 

math and embedded computation. 

 



 

PAGES AND WORKSPACE 

There are two dominant traditional environments for problem solving – paper and pencil and whiteboards – 

each with its own benefits. Whiteboards are convenient because often entire workflows can be captured 

without having to perform any spatial management; however, they quickly fill up and cannot be used like a 

notebook for longer term workflows. Paper on the other hand is non-interactive and can provide no active 

assistance. Thus, we designed a hybrid tabletop solution that blends whiteboard-like interactions with resizable 

pages that live on a large virtual desktop. Users can grow existing pages to accommodate complex problems or 

pan the desktop to make room for new work. 

Beyond basic multi-touch interactions for dragging and rotating pages with one or more fingers, we designed 

three page management interactions, including a virtual desktop with panning bar, bezel gestures to create 

and delete pages, and a page “folding” gesture to make room for more work. 

Page Management 

To facilitate an exploratory mindset when problem solving, we wanted to minimize the cost of creating a new 

virtual page, so we associate it with a bezel gesture (Figure 3). Our bezel gestures are parameterized by the 

number of fingers that cross the bezel and which bezel is crossed. Swiping two fingers through the left or right 

bezel, as if reaching beyond the desktop for a new sheet of paper, creates a page. Swiping through with one 

finger pans the desktop. The physical distinctiveness of one versus two fingers along with bezel size enables 

eyes-free interaction 

 

Figure 3. Swiping over bezel with 2 fingers creates a page. 

Deleting a page requires a more deliberate gesture to avoid accidental triggering and to encourage pages to be 

“left around” on the virtual desktop as a paper trail of problem solving activity. After dragging a page into the 

bezel region, a trash can icon appears near where the finger contact left the screen; by continuing the drag 

back across the trashcan (the small grey icon in the middle figure), the page is deleted (See Figure 4). 



 

Figure 4. Dragging over bezel displays trashcan widget. 

Since pages can be manipulated with one or two fingers, they are subject to accidental manipulation, 

particularly when writing if the palm of the writing hand may be mistaken as a finger contact. The palm 

rejection technique of ignoring large contacts partially addresses this problem, however, users may also 

explicitly hold a page steady with two or more fingers from their non-dominant hand while writing – similar to 

how people control physical pages. 

Panning Bar 

To free users from having to worry about what to get rid of in order to make room for new material, we 

adapted the notion of a continuous virtual desktop that was previously found useful for desktop code 

development. Unlike fixed-size desktops, where the clutter of overlapping pages becomes an interaction 

burden, continuous virtual desktops allow users to create more space on demand while preserving a spatial 

record of their previous work.  

 

Figure 5. Swiping up through bezel with two fingers shows panning bar; continued dragging pans the desktop. 

Although swiping through the bezel with one finger supports fine-grained panning of the virtual desktop, we 

wanted a complementary technique to facilitate larger scale navigation. After recognizing an upward two-

finger swipe through the bottom bezel, we display an interactive panning bar (Figure ). The panning bar 

displays a live, miniaturized panorama of the user’s workspace that provides a visual overview of the user’s 

work history. The currently visible desktop is always centered under the user’s finger when the panning bar 

appears; as the user drags horizontally along the panning bar, the desktop scrolls correspondingly to that 

location. While one hand controls scrolling, the other hand can grab pages to relocate them within the virtual 



workspace. Invoking the panning bar requires a two-finger swipe to reduce the likelihood of unintentional 

triggering which can occur, for example, when leaning over the surface as accidental contacts are made with an 

arm, shirt, etc. 

Folding 

As a complement to the management of different pages, we support spatial management within a page by 

making page folding available with multi-touch gestures. Thus, for example, a user may choose to fold away 

part of a complex derivation in order to simultaneously view the problem statement and their current step in 

the derivation without having to scroll between the two. By pinching in the margin of a page, users 

interactively simulate a 3D fold in which the page buckles up between their fingers (Figure 6), before collapsing 

into a suggestive “crease” indicated with a soft shadow. Tapping the shadow line unfolds the page. 

  

Figure 6. Folding page contents to make space on the page 

Since this technique is intended to support complex work, it does not actually shorten the page the way a real 

page fold would, but instead causes the page contents to slide up and create open space at the bottom of the 

page. This operation is akin to code elision techniques in source code editors except it does not operate on 

syntactic structures.  

GESTURES 

Inherent ambiguities exist when trying to decide whether input is intended to be ink, a gesture or a direct 

manipulation. To support fluid command invocation and mode switching, we developed three complementary 

gesture techniques which have minimal overlap with other activities and thus potentially can be robustly 

recognized.  

 



Under-the-Rock menus 

Under-the-rock menus are a general purpose mechanism for associating contextual actions with display 

elements. In essence, they are context menus that are “hidden under the rock”, only to appear when objects 

(i.e., rocks) are moved. For example, dragging a term in a mathematical expression might default to a factoring 

operation; the under the rock menu for that term, however, would allow the interaction to be changed to 

reordering, term splitting, or something else.  

An under-the-rock radial menu grows, after an initial lag, out from an object’s initial location as the object is 

dragged away (Figure 7). Growing a semi-opaque menu from the start of a drag provides unobtrusive 

disclosure which is critical for not interfering with a default dragging behavior. The menu is only activated and 

made fully opaque after a second contact is made over its center; menu items can then be selected by sliding 

the second contact over them. An active menu can be deactivated by sliding the second contact back to the 

menu center and releasing. Since the menu appears predictably, centered on the drag’s starting point, trained 

users can anticipate this and co-articulate menu selection with dragging before the menu has become fully 

opaque as with marking menus. Depending on manual dexterity, this interaction can be performed with one 

hand. 

a. b. c. 

Figure 7. Under-the-rock menus. a) The 2 in the 2x term is dragged as a semi-transparent ghost until it is in 

front of the leading x2 – this factors it from the expression.  As the user drags, a semi-opaque radial menu 

grows to allow the user to change the semantics of the interaction. b) Touching the menu center makes it 

opaque and activates it, and dragging over the ∑ icon converts the default factoring interaction into a ‘split into 

sum’ interaction.  c) Now, as the user drags, the number ‘2’ changes and a negative term is added to ensure 

that the sum of the two terms is unchanged. 

Touch-Activated Pen Gestures  

Pen gestures are often touted as being well suited for invoking spatially parameterized commands. However, 

pen gestures are by definition ambiguous with regular inking activities unless distinguished through special 

hardware buttons (e.g., stylus-mounted, or external buttons). In our previous work, a set of pen-only gestures 

(for scribbling out, selecting, graphing and performing undo and redo) was designed and evaluated to be 

compatible with writing mathematical expressions. Still, in a general inking context, loosely defined pen-only 

commands, such as lasso selection and scribble deletion, are likely to conflict with regular inking and thus 

require additional input for disambiguation.  Instead, hybrid pen and touch gestures can be readily 

disambiguated from isolated ink and touch activities and enable fluid direct manipulation transitions.  



 

Figure 8. TAP gesture FSA. When the pen goes down, a set of gesture recognizers continuously monitor the 
pen input to see if it matches their gesture stem. When one or more stems are recognized, corresponding 
feedforward widgets are displayed.  When a feedforward widget is touched, it triggers recognition of that 
gesture to the exclusion of all others.  The recognized gesture can then provide a bi-manual direct 
manipulation state, followed by either a touch or pen-only manipulation state before the gesture is 
completed. 

Our solution, touch-activated pen (TAP) gestures, recognizes pen gesture stems on-the-fly as they are drawn 

(Figure 8). A gesture stem is a non-trivial subset of a complete pen gesture. Recognizing a gesture stem 

performs no command but rather introduces a feedforward widget(s) that can perform a command if triggered 

by concurrent touch input. If the pen stroke ends without touch input or if the stem no longer matches, the 

widget disappears. Triggering a TAP gesture with touch input allows fluid transitions to bi-manual, pen-only, or 

touch-only interactions. False recognition of TAP gestures is unlikely if widgets are positioned away from the 

hand holding the pen. In addition to improved recognition accuracy, TAP gestures are more scalable than pen-

only gestures since a similar or even a single gesture stem can trigger multiple non-overlapping feedforward 

widgets. To avoid the “noise” of unintended feedfoward during regular inking, all widgets are displayed at 

reduced opacity until activated by touch input. 

Example 1: Making 2D selections 

Although users can lasso ink by drawing an enclosed loop, there are times when this is inconvenient or 

inappropriate such as when selecting large regions of ink or when making a rectangular image clipping. Thus, 

we support an additional gestural selection technique: as a user draws a crop mark, a semi-transparent dashed 

rectangle appears in registration with the crop mark (Figure 9). The user can ignore this rectangle and keep 

drawing, or by dragging a finger across it switch from inking to rubber-banding a rectangular selection 

marquee. Since the pen and finger-touches control opposite corners of the marquee, its position and size can 

be adjusted simultaneously. For larger selections, this TAP gesture also provides the benefit of requiring less 

movement than a corresponding lasso would.  



 

Figure 9. Drawing a crop mark (red polyline from left to right and then down) displays a feedforward 

selection/clipping marquee widget. Dragging the marquee while drawing switches to bi-manual selection. 

Example 2: Inserting space 

When problem solving, users often are unable to plan ahead spatially for their future notations and find 

themselves in need of inserting space between existing notations (and occasionally wanting to remove space). 

In these cases, they need to specify where and how the space should be created (e.g., vertically or horizontally, 

across the whole page or locally). We provide a TAP gesture for space insertion (Figure 10): as the user draws a 

straight line in any orientation, space insertion widgets appear on either side of the line starting point for 

selecting the page contents on either side of the line respectively. If the user ends their ink stroke, the widget 

disappears. However, if the user touches either widget, the drawn ink becomes a “push-bar”. Moving both 

ends of the push-bar is like manipulating the top (or bottom) corners of a picture frame where the page 

contents below (or above) the push-bar is the picture. If either contact is released, then the push-bar is  

constrained to move its contents along one axis. 

 

Figure 10. Drawing a line displays an insert space widget. Dragging the widget inserts or removes white space. 

Example 3: Clipboard pasting 

We also provide a TAP gesture for pasting clipboard contents. As a ‘p’ is drawn, we display a paste icon. If the 

user taps this icon, the ‘p’ disappears and the clipboard contents are pasted. If instead the paste icon is 

dragged, then the clipboard contents are interactively adjusted to fit within the boundary defined by the pen 

and touch contacts.  



PalmPrints 

Although gestures are efficient for executing many types of commands, they require significantly more effort 

than simply pressing a button. In situations where efficiency is important, such as when switching between 

different pen colors when drawing a diagram or alternating between math notations and drawing elements, 

the overhead of performing a path-based gesture (or locating and clicking a toolbar item) can be burdensome. 

In such cases, having the desired functionality on a button beneath one’s fingertips on the non-dominant hand 

is both efficient and robust. 

 
Figure 11. Placing palm and fingers on surface activates PalmPrint menu. Lifting and tapping a finger changes 

the pen mode. Chording is also possible. A Customize palette allows drag and remapping of functions 

We thus developed PalmPrints which are similar to finger-tapping techniques but which instead activate 

implicitly when an open hand is placed on the surface (Figure 11) and deactivate when it is lifted to do 

something else. While the users palm rests on the surface, up-down fingertip transition are recognized to 

invoke a command associated with that finger. Identifying each fingertip is done by sorting the initial five 

fingertip contacts according to their radial angle relative to the larger palm contact(s). When a fingertip contact 

is lost, we trivially know which finger was lifted. When all lost contacts are regained (as new contacts), a chord 

is triggered that executes the commands associated with each finger that had been lifted.  

By associating functionality with each fingertip, users can execute commands without looking; however, we 

display an icon above each fingertip for disclosure (Figure 11). Dragging and dropping functions from a 

customization palette onto an icon reassigns that fingertip’s command. 

Alternatively, the user can use their primary hand to “lock” their PalmPrint on the display. If the user then lifts 

their hand after having locked the PalmPrint, the PalmPrint will transform itself into a five-item toolbar. This 

toolbar can be dragged with either hand similar to a Toolglass. The toolbar can be dismissed with a tap, or it 

can be restored to a PalmPrint if the user simply places their hand back down on the surface in the registration 

pose. 



FingerPose 

Since touch-and-drag is preferable to the more heavyweight bi-manual PalmPrint for common actions such as 

dragging a window or panning its contents, we created FingerPose which selects one of two input modes based 

on vertical finger posture.  

 

Figure 12. Finger posture selects a drag mode. A pause-activated widget reveals functionality and thresholds. 

FingerPose estimates the posture of a finger based on initial contact geometry to select between two 

manipulation functions (Figure 12). By using one-finger FingerPose for window dragging, and content scrolling, 

and two-finger pinching for zooming, each function is isolated and inadvertent manipulations are unlikely. The 

fingertip posture is recognized as a contact with a physical area below a calibrated threshold, otherwise a 

finger pad contact is recognized. Since contact area is dynamic, particularly just after the finger touches the 

surface, we do not distinguish between poses until after the contact has moved by 25 pixels. In addition, if the 

contact has not moved after 100ms, we display a dynamic 3D representation of the recognized “posture” and 

its associated function. Finger posture is ignored after dragging begins.  

Math 

Using existing SDKs, we support math-specific interactions for writing mathematical expressions, computing 

values with extended mathematical notations, and creating graphs with gestures. In addition, we extended this 

work with a suite of multi-touch interactions for transforming mathematical expressions both to compute 

solutions and to gain insight on the problem domain and the process of solving problems – concerns that apply 

equally to students and experienced mathematicians. From a mathematics perspective, our goal was to extend 

the functionality of previous pen-based math systems to support algebraic manipulations that are fundamental 

to mathematical reasoning but which are generally hidden by CAS systems. Although pen-based manipulation 

techniques are possible, we felt that multi-touch interactions were more suitable for the manipulation nature 

of mathematical transformations. Unlike pen interactions, which inherently conflict with writing mathematics 

and require a compound selection/manipulation interaction, multi-touch gestures have the promise of 

integrating selection with manipulation in a single, memorable and efficient physical action. For example, to 

join two additive terms, users can just pinch them together; a hypothetical pen-based counterpart would need 

to select terms and indicate the join operation (and not conflict with the entry of new math notations) before 

initiating direct manipulation feedback. Nonetheless, the set of possible mathematical operations is large, 

requiring subtlety to increase the expressiveness of multi-touch manipulation.  



Fingertip Area Selections 

Tapping an expression activates it for manipulation, and increases its font size to facilitate syntax-aware, 

contact area-based selection; touching a symbol selects it subject to convenience shortcuts based on how the 

fingertip contact regions intersect mathematical symbols (Figure 13).   

 

Figure 13. Fingertip area selection: 1) one symbol; 2) two symbols by touching both; 3) term by touching 

operator; 4) neighboring terms by touching part of one and operator; 5) a long span. 

Touch Manipulations 

The interface for performing mathematical transformations consists of sequences of pinch, drag, and stretch 

direct manipulations of terms within an expression (Figure 1), as summarized in Table 1. The associated 

algebraic transformations are naturally parameterized by where the terms are dragged.  Thus, to preserve 

context, we do not modify the touched expression directly.  Instead, “ghost” copies of just the touched 

symbols follow the user’s finger contacts while the resulting transformed expression interactively updates 

below the original. Since there are more math transformations than unique input affordances, mode switching 

is required. To reduce dependency on an explicit mode switching UI, we select different default manipulations 

based on what was touched. For example, dragging an operator defaults to reordering the term on its right, 

whereas, dragging a variable(s) defaults to successively factoring it out of the expressions it passes over. During 

all manipulations, an under-the-rock menu grows out from the original location of the dragged symbol – when 

needed, this menu can override the default manipulation. The limited expressivity of touch input makes it easy 

to start “playing with math” but also demands the adoption of interaction strategies. For example, to simplify 

x+y+x,one x must be moved next to the other before a pinch can join them.  



 

Table 1. Multi-touch algebraic identity transformation UI.  Manipulated  terms are highlighted in red. Resulting 

expressions are shown below with modified terms in green.  

Although users may enjoy learning the math transformation UI  by playfully exploring “what happens if” 

scenarios, a technique such as GestureBar could provide additional, more efficient, disclosure of functionality 

and strategies. 

Visual Feedback 

Since the structure of an expression may change significantly as the result of a single transformation, we did 

not feel that it was possible to show the results of a transformation in-place with the original expression. In 

addition, since a transformation may produce a result that is structurally quite different, we felt that it was 

important to leave a visual trail that would explicitly show what happened in a transformation step. Thus, as 

users manipulate a term, the resulting transformation is displayed directly below. We use an arrow-like 



visualization in combination with colorization and shading cues to depict how terms have changed from one 

transformation step to the next (Figure 1).  

Pilot Evaluation 

To gain insight into the utility of Hands-On Math for domain users and to gain feedback regarding its 

techniques and features, we recruited 9 students from the undergraduate population of Brown University.  All 

students made some use of mathematics in their coursework.  In addition to letting participants play with the 

system, each was asked to perform a set of exploratory tasks: 

 Create and manipulate pages 

 Perform a “back of the envelope” calculation 

 Solve a more complex math expression via a multi-step derivation 

 Graph an equation and manipulate the result 

 Use the PalmPrint to change colors while drawing a diagram 

 Make a web clipping 

 Manipulate the contents of a page with TAP gestures and page folding. 

Discussion and future directions 

Our central hypothesis, that people would learn and work more efficiently if CAS functionality were available in 

a paper-like environment, was supported by our pilot evaluations. Users were enthusiastic about the potential 

of the system to let them concentrate on mathematics problem solving by removing the burdensome and 

error-prone steps of transcribing equations or missing intermediate steps.  They also were in unanimous 

agreement, unlike paper and pencil, they felt they would be less likely to make “stupid mistakes“ and would be 

better able to take chances while exploring more complex problems. The ability of our system to support free-

form note taking, symbolic and numerical computation, graphing, and function transformation all “without” a 

UI led participants to conclude that the system has “great potential” not just in their math-oriented classes, but 

also as a study platform in general. The most significant perceived obstacle to adoption was the bulky, non-

portable form factor of our Microsoft Surface hardware and the low quality of light pen input, as compared to 

physical pens or even Tablet PC ink. It was also clear that extending the set of possible mathematical 

operations should be a high priority. We also feel important recognition techniques still need to be addressed, 

for example, to interpret math written on angled baselines, to automatically distinguish mathematics notations 

from diagrams and free-form inking, and to recognize, anchor and track annotations of typeset terms and 

symbols.   

Page metaphor. We also found that the choice of using manipulable pages as a primary UI element, as 

opposed to a whiteboard or book metaphor, appeared to provide a viable alternative to explicit grouping as an 

organizing principle. Users seemed to have a strong, a priori sense of how to organize information with pages. 

They expected math written on one page to be in the same computational scope, and distinct from math 

written on other pages. They had strong feelings about wanting to grow pages to add related information and 

to use a new page to enter logically different information. Being able to fold pages to make more space 



seemed natural and “cool” to most participants; however, many felt that a pen-based technique was needed 

to precisely define the pinch boundaries while also admitting they might not need folding functionality very 

often. Alternatively, users were captivated by the panning bar, identifying it as a convenient tableau for 

collecting informal collections of pages and addressing the desire to spread a working set of pages out beyond 

the limited dimensions of the display surface. Pages also provided a natural work unit in which users could 

explore a problem, then discard the page if they were off-track, or push it aside to use a new page when 

handling an interruption. We expect that pushing the page metaphor more, for example, to flip, curl, staple, 

hyperlink, or embed pages may reap benefits. 

Sandwich Problem. With regard to specific UI choices, we were somewhat surprised to find that users were 

not inclined to be receptive to bi-manual interaction. We summarize their reticence as the sandwich problem 

in which participants felt that it was unnatural to require bi-manual interaction since their other hand might be 

doing something else, like holding a sandwich. We interpret this to mean that users are not only concerned 

with actually using their other hand to do something else but they also were concerned that they might want 

to do something with their other hand besides improve a manipulation they could do almost as well with one 

hand. In essence, if the effort expended on bi-manual interaction appears to greatly exceed any performance 

benefit gained, then uni-manual interaction may be preferred. It is possible bimanual gestures take “getting 

used to” and so it may be appropriate to always have unimanual alternatives to ease the learning curve and to 

address the sandwich problem. 

Recognition. Counterbalancing the sandwich principle somewhat, we observed that the most likely gestures to 

be misrecognized were those that required either multi-touch or pen input, but not both. Hybrid TAP gestures 

were not accidentally triggered during the evaluation. However, largely due to the poor quality of the pen 

used, there were occasions when a TAP gesture stem was not recognized, causing ink to be left on the display. 

Thus we expect that it may be important to increase recognition latitude of the pen part of a TAP gesture, 

perhaps in response to sensing a hand hovering over the display, and/or to develop efficient recovery 

techniques when the pen stem is not recognized. 

Physical skill. We also found it notable that different users employed different, often inefficient, physical 

strategies when performing gestures. When shown a more efficient technique, they were almost instantly able 

to improve their performance, in many cases having an “Aha” moment. For example, switching between finger 

tip and finger pad touching requires only the bending of the second joint of the index finger; however many 

users adopted awkward poses such as fully extending the index finger and rotating their arm to be 

perpendicular to the surface. Similarly, when switching from writing ink with a stylus to dragging terms with 

their finger, several users tried to find a place to put the stylus on the table instead of tucking it up in their 

palm. Several users noted that they would like to use under the rock menus with one hand, but did not figure 

out on their own that this could often be accomplished more easily with the index and forefinger instead of the 

thumb and index finger. Thus, we expect that pen and multi-touch techniques may require more sophisticated 

and in-depth disclosure mechanisms than pen only gestures, for instance. 

Disclosure and entrenchment. Even though multi-touch input is relatively new, it seemed clear that some 

techniques have already become entrenched and others were harder to discover and master. For example, 



several users had trouble considering finger posture as an option for panning a graph because they felt that 

two-finger dragging was the de facto scrolling standard based on their experiences with MacBooks. They also 

considered their experiences with iPhones and MacBooks where all touches are equal. Thus extending 

disclosure techniques like GestureBar for surface interaction is worthy area for future research. 

Conclusion 

We presented a prototype system, Hands-OnMath, which reduces the barriers to accessing computational 

assistance during math problem solving by unifying CAS functionality with a virtual paper UI. This system 

contributes novel bi-manual and gestural techniques for managing and writing on virtual note pages in addition 

to direct manipulation techniques for algebraically transforming mathematical expressions. Pilot studies 

indicate that, after refinement, a mature version of Hands-On Math would be a desirable tool for scientific and 

academic note-taking and ideation. 


