Microsoft[®] Research Faculty Summit 2010

Network of environmental sensors in tropical rain forest

Celso von Randow Researcher, Earth System Sciences Center National Institute for Space Research, Brazil

Climate services in forests

G. B. Bonan Science 320, 1444 -1449 (2008)

Outline

- Biosphere-Atmosphere Interactions
- Technical and Scientific challenges
 - Environmental conditions in the tropics
 - Heterogeneity of rainforests
- Development of integrated network of environmental sensors
- Results from the pilot study in Atlantic coastal forest in Brazil
- Future plans: deployment and expansion of network in Amazonia

Biosphere – Climate Interactions

Flux tower measurements

Worldwide network

Sites are (almost) always complex

CO₂ emitted outside daytime footprint (yellow barrels) is not seen from the tower

0

CARLEN IN

CO₂ concentrations along topography

3D Test - [CO₂] along topography (early morning)

Challenge: understand the forest microclimate

- Heterogeneity pose big challenge to our understanding
- Need an approach that recognizes the complexity of the spatial variability of the environmental variables
- Development of new systems for environmental monitoring
 - Ideally: measurements within an above the forest with high spatial and temporal resolutions
- Technical Challenges
 - Environmental conditions: high insulation, humidity; inaccessible areas; bugs, rodents, etc
 - Data quality assessment/ visualization tools

Pilot study in the Atlantic forest

Network in the Atlantic Forest, which includes five 25m towers linked by Kevlar cables. The network was placed east of the main tower, along an altitudinal transect of ~60m height. (Pilot Experiment)

Geosensor network in the Atlantic forest : experimental design

Total 52 motes = 156 thermometers 52 hygrometers

Universidade de São Paulo B R A S I L Laboratório de Clima e Biosfera – IAG / USP

Spatial variability at 25 m height

Sampling area : ~ 80 m x 120 m 18 nodes Each node with 1 or 2 motes

Spatial variability at 25 m height

Vertical variation of the temperature

Visualization of spatial variability at 25 m height

-					
	Node	Location	Nome	X (m)	Y (m)
	6	Tower 3-4	T341	14	105,5
	7/60	Tower 2-3	T232	15,5	63,5
	8	Tower 1-5	T151	79	27
	9	Tower 3-6	T361	22	72
	13	Tower 1-2	T121	58	0
	27/30	Tower 4	T441	23,5	114,5
	29/50	Tower 2	T221	36	0
	40/41	Tower 3	T331	5	96,5
	42/69	Tower 5	T551	77,5	52
	44/47	Tower 1	T111	80	0
	46	Tower 6	T661	38	47
	51/52	Tower 1-6	T161	58,5	24
	56/58	Tower 4-5	T451	41,5	93,5
	57/63	Tower 4-5	T452	59,5	73
	59/61	Tower 2-3	T231	25,5	33
	62/66	Tower 4-6	T461	31	80,5
	64	Tower 5-6	T561	58	49,5
	65	Tower 2-6	T261	37	24

Node temperature value assigned: median of all thermometers each node

Visualization: deviation from minimum temperature

Results

- 1) Outstanding capacity of cooperation and expertise in only 1 year work with five institutions
- Preliminary analysis showed physically sounding data
- Detection of improvements (e.g. humidity measurement, sensor accuracy)
- 2) Foreseeing to monitor Amazonia

Wild environment with largest worldwide tropical forest, 20% world freshwater and an enormous biodiversity

Supportive on going projects: Fapesp-MSR 2009-2011 : sensor and software development (INPE+ USP) LBA/Fapesp Carbon Tracker 2009 – 2014 : regional multi-disciplinary data

Next steps: to adress which relevant questions to answer, partnerships, and how technology can help science and environment

Current efforts

FAPESP- Microsoft Research – Project # 2009/53154-0

DEVELOPMENT AND APPLICATION OF WIRELESS NETWORK OF GEOSENSORS FOR ENVIRONMENTAL MONITORING IN TROPICAL FORESTS

- Assembly of prototypes in Brazil
- New humidity sensors (materials engineering)
- Fault-tolerant, capable of almostindependent operation
- Low power consumption
- Wireless data transmission

Software infrastructure

- Data quality control (identification and removal of faults)
- Operational and science database
- Web-based, integrateable with other environmental data systems
- Visualization tools

Application

- Study of spatial variability of temperature and humidity within the forest
- Reduction of uncertainties associated with the terrain's topography.
- Validation of theoretical biosphere models.

Software infrastructure development

- Data entry (from the sensor network): validation, metadata creation, data quality evaluation, etc.
- Science database.
- Science support:
 - Simple reports, subset extraction.
 - Visualization.
 - Spatiotemporal analysis (mining).
- Extensions:
 - Web services to provide access to the data.
 - Integration with other environmental databases.
 - Virtual Laboratories.
- Pilot for other environmental science databases.

Planned deployment in Amazonia

Partnership

Microsoft[®]

Universidade de São Paulo BRASIL

Laboratório de Clima e Biosfera – IAG / USP

Microsoft[®] Research Faculty Summit 2010

Atlantic rainforest sensor networking

Microsoft[®]

© 2010 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Microsoft[®] Research Faculty Summit 2010