
Ade Miller (adem@microsoft.com)
Senior Development Manager
Microsoft patterns & practices

“Save time and reduce risk on your software development projects by
incorporating patterns & practices, Microsoft's applied engineering
guidance that includes both production quality source code and
documentation.”

http://msdn.com/practices/

http://msdn.com/practices/

• Why we should care about parallel programming

• Where to start

• Patterns for parallelism

• Conclusions

Then:
Faster clocks

Now:

More cores

End of the

Free Lunch

Dual-Core Itanium 2

Intel CPU Trends
 (sources: Intel, Wikipedia, K. Olukotun)

Pentium

386

Pentium 4

• Although driven by hardware changes,
the parallel revolution is primarily a software revolution.

• Parallel hardware is not “more of the same.”

• Software is the gating factor.

• Software requires the most changes to regain the “free lunch.”

• Hardware parallelism is coming,
more and sooner than most people yet believe.

If you talk to developers you’ll hear…

• “Avoid multithreaded code”

• “Parallel programming is hard”

• “It’s for the experts”

• “Where’s my magic parallelizing compiler?”

How do we help them succeed in this new parallel world?

• Looked at:
• Our Pattern Language (OPL)

Berkeley, Illinois, Intel, Microsoft, Samsung, U. Victoria, U Florida, Bosch…

• Patterns for Parallel Programming
Timothy G. Mattson, Beverly A. Sanders, Berna L. Massingill

• White Papers from Microsoft & Intel

• …

• New frameworks & tools in Visual Studio 2010
• Task Parallel Library (TPL)

• Parallel Debugger

• Parallel Profiler

Let’s look at a “real” application…

• A Financial application for portfolio risk analysis

• Look at large chunks of recent and historical data

• Compare models with market conditions

• Source code available: http://parallelpatterns.codeplex.com/

http://parallelpatterns.codeplex.com/

• Tasks vs. Data

• Control Flow

• Control and
Data Flow

• Data “chunk” size?
• Too big – under utilization

• Too small – thrashing

• Chunk layout?
• Cache and cache line size

• False cache sharing

• Data dependencies?

• Enough tasks?
• Too many – thrashing

• Too few – under utilization

• Work per task?
• Small workloads

• Variable workloads

• Dependencies between tasks?
• Removable

• Separable

• Read only or read/write

• Task constraints
• Temporal: A → B

• Simultaneous: A ↔ B

• None: A B

• External constraints
• I/O read or write order

• Message or list output order

• Linear and irregular orderings
• Pipeline

• Futures

• Dynamic Tasks

• Flexibility:
• Easy to modify for different scenarios

• Runs on different types of hardware

• Efficiency:
• Time spent managing the parallelism vs. time gained from utilizing more

processors or cores

• Performance improves as more cores or processors are added – Scaling

• Simplicity:
• The code can be easily debugged and maintained

“Does the ordering of steps in your
algorithm depend on data flow
constraints?”

• Directed Acyclic Graph

• Dependencies between tasks

• F4 depends on the result of F1 & F3 etc

• Also called “Task Graph”

• Variable size tasks – harder to balance

• Small tasks – more overhead; management and communication

• Large tasks – less potential for utilization

• Hardware specific – more tasks than cores

“Do you have sequential loops where there's no communication
among the steps of each iteration?”

• A very common problem!

“Do you need to summarize data by applying some kind of
combination operator? Do you have loops with steps that are not fully
independent?”

• Calculate sub-problem
result per task

• Merge results later

• Reduces need for locking

• “Reduction” or “map/reduce”

“Do you have specific units of works with

well-defined control dependencies?”

• How do we divide up the
workload?
• Fixed workloads

• Variable workloads

• Workload size
• Too large – hard to balance

• Too small – communication may dominate

• Static allocation:
• By blocks

• By index (interleaved)

• Guided

• Dynamic work allocation
• known and unknown task sizes

• Task queues

• Work stealing

• The TPL does a lot of this work for you

• Don’t share!

• Read only data

• Data isolation

• Synchronization

Success =

• Frameworks and runtimes
• Task Parallel Library for .NET

• Parallel Patterns Library & Asynchronous Agents Library for Visual C++

• Tools
• Visual Studio 2010

• Guidance!
• Patterns

• Examples

Programming with Microsoft .NET:
Design Patterns for Decomposition and
Coordination on Multicore Architectures

Colin Campbell, Ralph Johnson, Ade Miller and Stephen Toub

Foreword by Tony Hey

Goal: Help developers make the most of the new
parallel features in Visual Studio 2010

Due for release late summer 2010.

http://parallelpatterns.codeplex.com/

http://parallelpatterns.codeplex.com/

• Introductory material

• Six key patterns

• Adapting OO patterns

• Debugging and profiling

• Technology Overview

• UPCRC Initiative
• Illinois

• Intel

• UC Berkeley

• Microsoft Research

• Numerous others who provided feedback

“Does your application perform a sequence of operations repetitively?
Does the input data have streaming characteristics?”

1 1 1 1

2 2 2

3 3

• Organize by Ordering

• Producers… produce!
• Block when buffer full

• Consumers… consume!
• Block when buffer empty

• Pipeline length
• Long – High throughput

• Short – Low latency

• Stage workloads
• Equal – linear pipeline

• Unequal – nonlinear pipeline

• Shared queue(s)
• Large queue items – under utilization

• Small queue items – locking overhead

Futures

Pipeline

Parallel

Tasks

Parallel

Aggregation

Parallel

Loop

• Many problems can be tackled using
recursion:
• Task based: Divide and Conquer

• Data based: Recursive Data

“Does your algorithm divide the problem domain dynamically during
the run? Do you operate on recursive data structures such as graphs?”

• Deep trees – thrashing
• Limit the tree depth

• Shallow trees – under utilization

• Unbalanced Trees – under utilization

Books

• Patterns for Parallel Programming – Mattson, Sanders &
Massingill

• Design Patterns – Gamma, Helm, Johnson & Vlissides

• Head First Design Patterns – Freeman & Freeman

• Patterns of Enterprise Application Architecture – Fowler

Research

• A Pattern Language for Parallel Programming ver2.0

• ParaPLOP - Workshop on Parallel Programming Patterns

• My Blog: http://ademiller.com/tech/
(Decks etc.)

http://www.amazon.com/Patterns-Parallel-Programming-Timothy-Mattson/dp/0321228111
http://www.amazon.com/Patterns-Parallel-Programming-Timothy-Mattson/dp/0321228111
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/First-Design-Patterns-Elisabeth-Freeman/dp/0596007124
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://www.upcrc.illinois.edu/workshops/paraplop09/index.html
http://ademiller.com/tech/

