

James Larus
Microsoft Research

July 13, 2010

• Next computing platform
• Client + Cloud

• All computing will be cloud computing

• Anything could be a client
• Conventional: PCs + phone + TV

• Single function: Kindle + car + appliance, ..

• New HW enables killer apps

• Platform as a service is just a component
• Amazon Web Services / Microsoft Azure / Google AppEngine

• On-demand, hosted, internet computing resources

• Commodification of distributed computing
3

4

• Inherently distributed

• Wide range of clients (single purpose
rich)

• “Unlimited” computation and data

• Ubiquitous access to information and
computation

5

http://www.datacenterfm.com/index.htm
http://www.datacenterfm.com/index.htm
http://www.craftytv.com/

6

DC HW

DC OS

App DC SW

Client HW

Client SW

• Service needs to handle the world
• Hundreds of millions of users

• Continuously available

• Built on unreliable, commodity platform

• Make money

7

Containers

Generation 1

Datacenter Co-

Location

Generation 4

Modular

Datacenter

Server

 Capacity

 Rack

 Density

 and

 Deployment

Generation 2

Quincy and San

Antonio

Generation 3

Chicago and Dublin

 Dep loyment Sca le Uni t

IT PAC

 Facility PAC

8

9

9

10

Each data center is approximately

11.5 times

the size of a football field

10

11

$500M+ investment

707,000 sq ft

1.5 million man-hours-of-labor

3000 construction related jobs

7.5 miles of chilled water piping

3400 tons of steel

2400 tons of copper

26,000 cubic yards of concrete

190 miles of conduit

12

$500M+ investment

707,000 sq ft

1.5 million man-hours-of-labor

3000 construction related jobs

7.5 miles of chilled water piping

3400 tons of steel

2400 tons of copper

26,000 cubic yards of concrete

190 miles of conduit

Data center is approximately

17 times

the size of a football field

and …

….Uses Containers

13

 Concurrency

Parallelism

Message passing

Distribution

High availability

Performance

Application partitioning

Defect detection High-level abstractions

• Inherently concurrent programming
• Asynchronous, message-driven model

• Multiple requests streams

• Threads or events??
• Threads offer familiar sequential programming model

• But, state can change when thread is preempted (synchronization)

• Cost of thread and context switch limits concurrency

• Handlers fracture program control flow
• Logic split across event handlers

• Explicit manipulation of local state (no stack frames)

• Higher-level (state machine, Actor, …) models?

• Lack of consensus inhibits research, development, reuse,
interoperability
• Parallel programming, redux

14

• Computers are parallel
• Increased performance + power efficiency

• Computers will be heterogeneous
• Multiple, non-isomorphic functional units

• Data centers are vast message-passing clusters
• Availability and throughput

• Parallel programming is long-standing sore point for computer science
• State of the art: threads and synchronization (assembly language)
• No consensus on shared memory semantics

• New research on higher-level models is not panaceas
• Transactional memory
• Deterministic parallelism

• Radical proposal: abolish shared memory
• Message passing is inherent in distributed systems, so why 2 models?
• Shared memory is difficult and error prone

15

• Fundamental in distributed systems and better programming model
• Performance / correctness isolation

• Well-defined points of interaction

• Scalable

• More difficult to use
• Little language support

• Erlang integrates message with pattern matching

• Sing# channel contracts

• Sing# postbox semantics

• Message passing libraries
• Fundamental mismatch: asynchronous strange in a synchronous world

• Open problems
• Control structures for asynchronous messages

• Communications contracts

• Integration of messages in type system and memory model 16

17

x86-64

CPU/APIC

MMU

App App App App

Monitor

CPU driver

Monitor

CPU driver

Monitor

CPU driver

x86-64

CPU/APIC

MMU

x86-64

CPU/APIC

MMU
Cache coherence,

Interrupts

User space

Kernel space

• First version:
• Centralized, poor scalability, but correct

• 1021 messages, 487 memory allocation RPCs

18

50 million cycles

(approx 40ms)

Core 16

Core 0

• Change the API
• Create domains on all cores at once

• 76 messages

19

2.5 million cycles (approx 1ms)

• Distributed systems are rich source of difficult problems
• Replication
• Consistency
• Quorum

• Well-studied field with good solutions
• Outsider’s perspective: research has focused on fundamental problems and

techniques used in real systems

• Common abstractions
• Replication
• Relaxed consistency
• Persistence

• How can these techniques be incorporated into programming model?
• Libraries
• Language integration
• New models

20

• Services must be highly available
• Blackberry/Google/… outage gets national media attention
• Affect millions of people simultaneously
• Service becomes part of national infrastructure

• High availability is challenge
• Starts with design and engineering
• Hard to eliminate all “single points of failure”
• Murphy’s law rules
• Antithetical to rapid software evolution

• Programming models provide little support for systematic error handling
• Disproportionate software defects in error-handling code

• Afterthought
• Run in inconsistent state
• Difficult to test

• Erlang has systematic philosophy of fail and notify (but stateless)
• Could lightweight transactions simplify rollback for stateful languages?

21

• Performance is system-level concern
• Goes far beyond the code running on a machine
• Most performance tools focus on low-level details

• Current approach is wasteful and uncertain
• Build, observe, tweak, overprovision, pray

• Performance should be specified as part of behavior
• SLAs as well as pre-/post-conditions

• Need scalability
• Grow by adding machines, not rewriting software

• Architecture should be the starting point
• Model and simulate before building a system
• What is equivalent of Big-O notation for scalability?

• Adaptivity
• Systems need to be introspective and capable of adapting behavior to load
• e.g., simplify home page when load spikes, defer low-priority tasks, provision more

machines, …

22

• Static partition of functionality between client and server
• Clients have different architectures and capabilities

• Adapt to changing constraints (e.g., battery)

• Move computation to data, particularly when communications constrained

• Code mobility
• Exists in data center (VMs), why not across data center boundary?

• Currently, client and server are two fundamentally different
applications
• Evolution around interfaces

• Volta (Microsoft)
• Single program model, compiled for server and client

23

• Considerable progress in past decade on defect detection tools
• Tools focused on local properties (e.g., buffer overruns, test coverage, races, etc.)

• Little work on system-wide properties

• Modular checking
• Whole program analysis expensive and difficult

• Not practical for services

• Assertions and annotations at module boundaries

• Can check global properties locally

• e.g., Rajamani & Rehof’s Conformance Checking

• New domain of defects
• Message passing

• Code robustness

• Potential performance bottlenecks 24

• Map-reduce and dataflow abstractions simplify large-scale data
analysis in data centers
• Convenient way to express problems

• Hide complex details (distribution, failure, restart)

• Allow optimization (speculation)

• Not appropriate for services

• Need abstractions for wider range of problems
• Interactive applications

25

• At least for a language and tools researcher

When your only tool is a hammer, everything looks like a nail.
-- Paul Hilfinger (PhD advisor)

 26

• Goals
• Simple, widely accessible programming model

• Encourage use of scalable, resilient software architectures

• Raise level of abstraction (CLR – Windows ≈ Orleans – Azure)

• Grains are unit of computation and data storage (Actors)
• Can migrate between data centers

• Replication, consistency, persistence handled by runtime system

• One programming model for client and server
• Simplify development, debugging, performance tuning, etc.

• Single-source distributed programs (eg Volta)

• Enable code mobility

27

Application

(Cloud Component)

Data Center

(Azure)

Grain Activation

Promise

Library

Clients

Application

(Client Component)

Orleans Runtime

Orleans Runtime

Grain

29

Azure

Internet
Application

DC# Tools

Orleans Runtime

Geo-Distribution Data Replication and Consistency

Performance Monitoring Adaptive Control

Distributed Debugging Runtime (Correctness) Monitoring

Deployment, Configuration, Maintenance

30

Channel

Grain

Activation

Orleans Runtime

Data Center 1

Data Center 2

Client

1

2

3

31

Migration

Persistence

Directory

Replication

Mobility

• Orleans runtime provides functionality common to cloud apps

• Building blocks of distributed systems
• Persistence

• Replication

• Consistency

• Configuration, versioning, deployment

• Monitoring, debugging, auditing

32

• How do we connect grains?
• Internal: grain creates channel

to another grain

• External: grain talks to port,
which is wired to port on
another grain

• Coordination language
describes wiring?

• Dataflow vs request-response
model
• What support do each need?

33

34

Development

Deployment

Activation

Use

• Update code and data in place
• Cannot stop system

• Rapid, frequent code releases

• Seamless evolution

• Multiple versions execute simultaneously
• Test during deployment

• Deployment not instantaneous

35

• Existing tools do not address problems of scale
• Debug 10K machines running 1M separate tasks

• Understanding performance of 10K machines and identifying performance
bottlenecks

• Monitor behavior of 10K machines to identify unexpected behavior, attacks,
HW failure

• Few concurrent or parallel defect detection tools

36

37

• Existing languages provide little support for message passing
• Asynchronous stranger in a synchronous world

• Failure handling is afterthought
• Disproportionate fraction of bugs in error handling code

• Run when state is inconsistent

• Difficult to test

• Programming model/architecture as well as language

38

• Complex tradeoffs
• Replicate data?

• Consistency issues

• Bandwidth cost

• Partition data?
• Partitioning criteria

• Migration

• Replicate computation?
• Consistency issues

• Inherent inefficiency

• What is goal of distribution?

39

• Cloud computing is more than VMs, data centers, web services, …
• New form of computation

• Opportunity to correct problems with existing computing
• Cost, complexity, reliability, …

• Exciting new challenges for the programming languages, compiler,
programming tools communities

40

