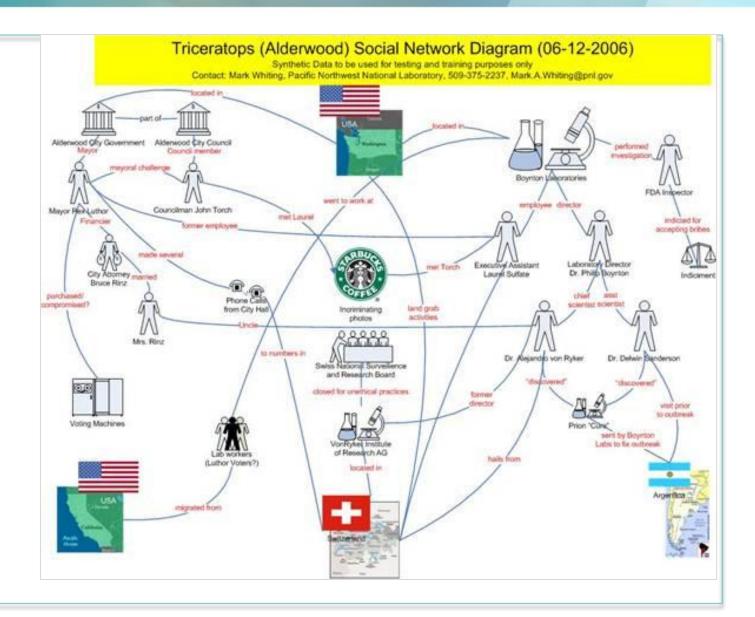
Microsoft[®] Research Faculty Summit 2010

Collaborative Visualization, Tabletop Touch

Danyel Fisher VIBE Researcher Microsoft Corporation


Collaborative Text Analysis

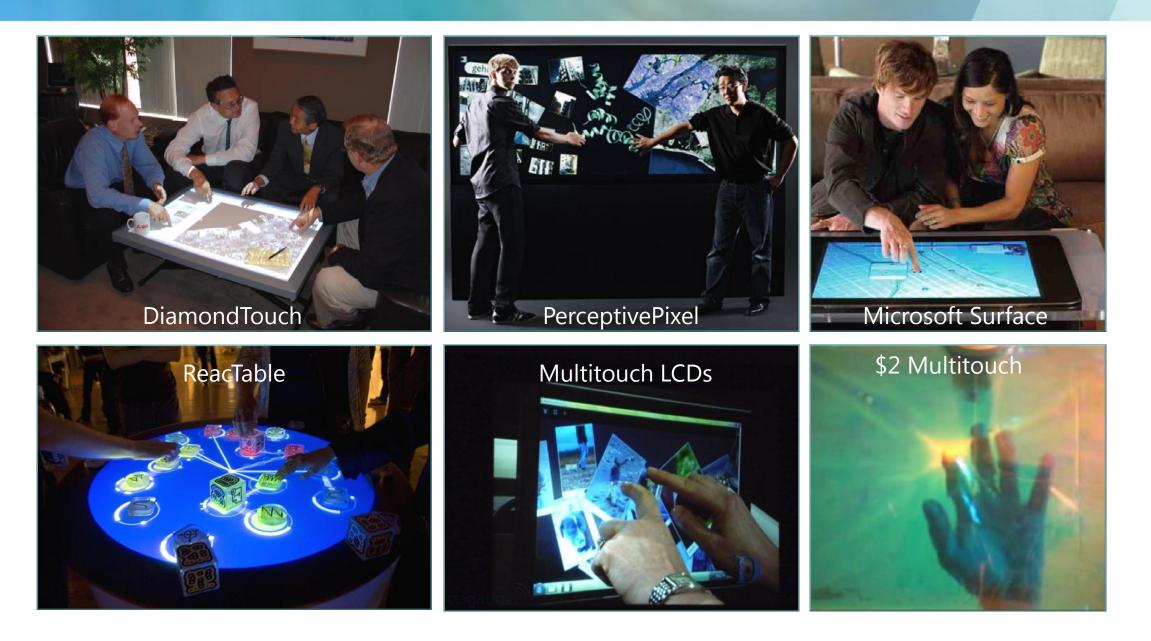
The Cambiera Project

Design Data and Tasks

- 310 newspaper articles
- Find relevant articles
- Form hypotheses, connections

Research Problems

- Follow separate hypotheses (correct or incorrect)
- Capitalize on the group effort


Research Problems

Follow separate hypotheses (correct or incorrect)

Capitalize on the group effort

Related Work

Mixed-focus collaboration

Collaborative Information Analysis Processes

		Stra Discuss Collaboration	Clarify tegize h Style alidate	
	Select			
	Operate			+
	Parse			<u> </u>
	Browse			
Loosely Coupled \	Vork		Closely C	Coupled Work

Isenberg et al., CHI 2008

Design Goals

Support individual & group

- Surface application with parallel input
- Provide peripheral awareness information of others' work

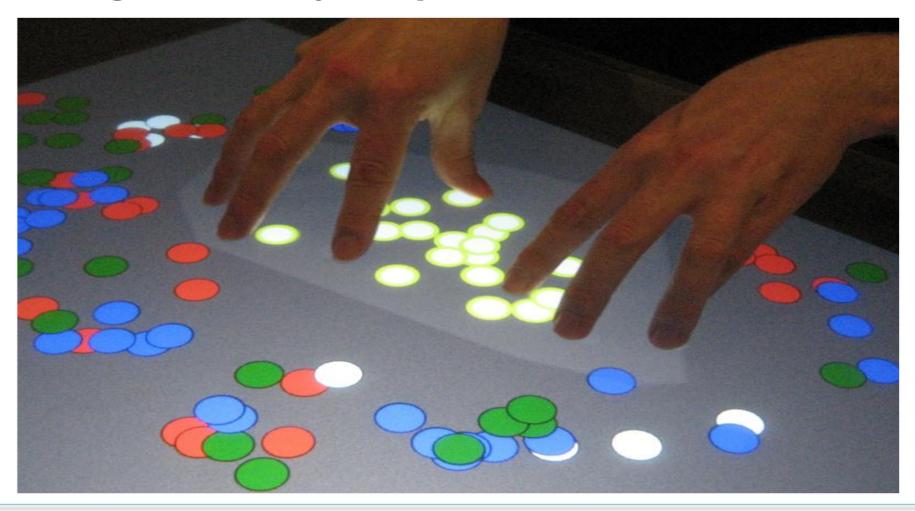
Microsoft® Research Faculty Summit 2010

Cambiera

Awareness Overview

Collaborative Brushing and Linking – the other view:

Collaborative Brushing and Linking


Awareness information

- Did another search also find my document?
- Has someone else issued my search?
- Has someone extracted the same document?
- Has someone read the same document?

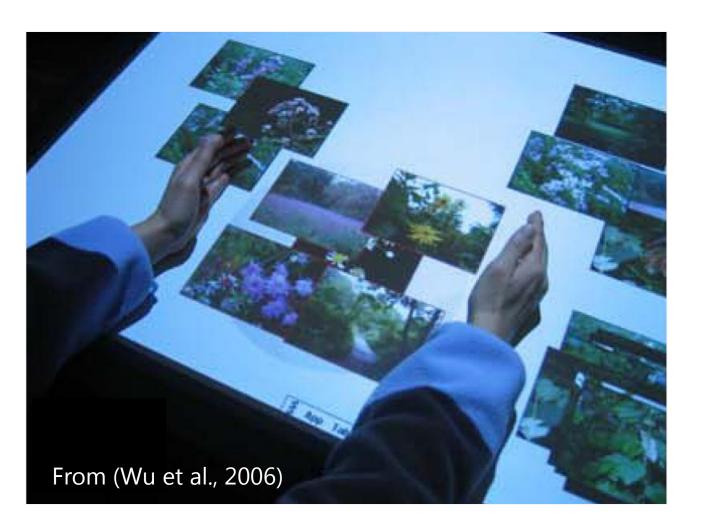
Handling Many Objects

How to design multi-object operations?

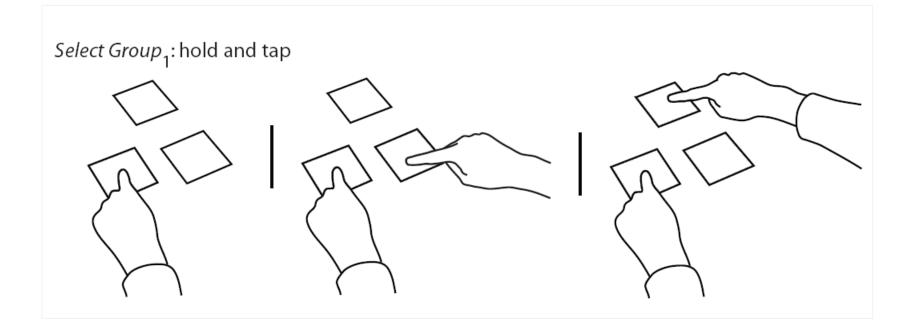
How to design multi-object operations?

Organize 🔻 🏢 Views 🔻 🚷 Burn							_
orite Links		Name	Date modified	Туре	Size	Tags	
Documents		🖢 applet	07/12/2007 11:23	File Folder			
Music		CVS	07/12/2007 11:23	File Folder			
Pictures		🕞 data	07/12/2007 11:23	File Folder			
		🔁 paper	07/12/2007 11:23	File Folder			
More »		.#TypoPaint.pde.1.2	26/06/2006 11:54	2 File	11 KB		
lers	v	.#TypoPaint.pde.1.7	27/06/2006 11:50	7 File	12 KB		
GradueSeminarSeries	*	.#TypoPaint.pde.1.9	28/06/2006 1:08 AM	9 File	13 KB		
Groningen200801		.#TypoPaint.pde.1.11	28/06/2006 1:18 AM	11 File	15 KB		
Infovis2007		.#TypoPaint.pde.1.23	29/06/2006 5:45 AM	23 File	20 KB		
Infovis 2006		.#TypoPaint.pde.1.27	29/06/2006 6:47 PM	27 File	21 KB		
Infovis 2006 Minute Madness		.#TypoPaint.pde.1.30	29/06/2006 7:49 PM	30 File	22 KB		
TypoPaint		.#TypoPaint.pde.1.31	29/06/2006 8:17 PM	31 File	22 KB		
Infovis Course		.#TypoPaint.pde.1.32	29/06/2006 8:21 PM	32 File	22 KB		
InnovisResearchOverview		.#TypoPaint.pde.1.39	01/07/2006 5:14 AM	39 File	22 KB		
INRIA200804		.#TypoPaint.pde.1.42	11/07/2006 1:51 AM	42 File	22 KB		
Interact		.#TypoPaint.pde.1.45	13/09/2006 8:23 PM	45 File	26 KB		
2009		.#TypoPaint.pde.1.50	11/10/2006 9:40 PM	50 File	27 KB		
LOFCodingDay08		.#TypoPaint.pde.1.55	18/10/2006 9:52 PM	55 File	31 KB		
MSRBrainstorm		Backup_of_PostcardBa	22/10/2006 3:07 AM	CorelDRAW 12.0 G	43 KB		
MSREndTal		📥 KeyboardLayout.avi	10/07/2006 9:53 PM	VLC media file (.avi)	282,669 KB		
npr project h		PostcardBack.cdr	22/10/2006 3:59 AM	CorelDRAW 12.0 G	43 KB		
PetraPhDPropa		🚮 Postcard Back.pdf	22/10/2006 3:22 AM	Adobe Acrobat D	45 KB		
Processing		📆 PostcardBack2.pdf	22/10/2006 3:07 AM	Adobe Acrobat D	45 KB		
Surface		🏪 screen.png	04/10/2006 6:17 PM	IrfanView PNG File	344 KB		
PetraDemoDay2008.zip		📊 sig-alternate.cls	10/07/2006 6:45 PM	CLS File	45 KB		
Programmieren		🧰 sig-alternate.tex	10/07/2006 6:44 PM	LaTeX Document	23 KB		
programming	=	📥 SlowFast.avi	10/07/2006 10:03	VLC media file (.avi)	357,202 KB		
Programming Magdeburg		💽 TypoPaint.pde	22/10/2006 8:21 PM	Processing Source	32 KB		
Programs		🙀 TypoPaint.zip	22/10/2006 8:23 PM	ZIP File	289 KB		
Received Files	-						
29 items							

How to design multi-object operations?


By [benwatts] on flickr

- How do virtual and physical techniques carry over?
- How will people use hands and fingers?
- How dextrous will they be?
- Will they focus on single objects or groups?


Related Work

Pile-N-Browse

Related Work

Studying gestures

From (Wobbrock et al., 2009)

User Study

Goals

- Study tasks with manipulation of large number of small objects
- Compare gestures from physical/mouse to surface
- Derive gesture vocabulary

Conditions

Mouse (M)

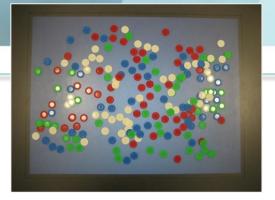
- 24" Desktop Screen
- Single click, marquee selection, ctrl+shift click
- Rendered circles

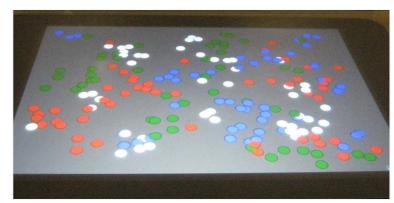
Physical (P)

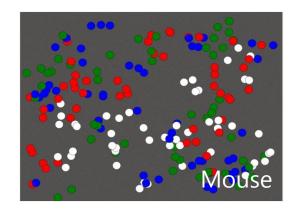
- 24"x18" MS Surface Screen
- Any physical interaction
- Game chips

Surface (S)

- 24"x18" MS Surface Screen
- Single finger touch, convex hull
- Rendered circles

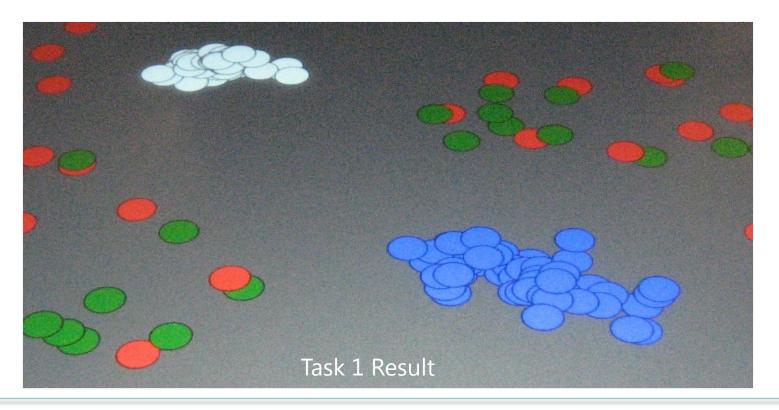

All


- Physical circle sizes matched
- 200 circles total, 4 colors (50 circles per color)

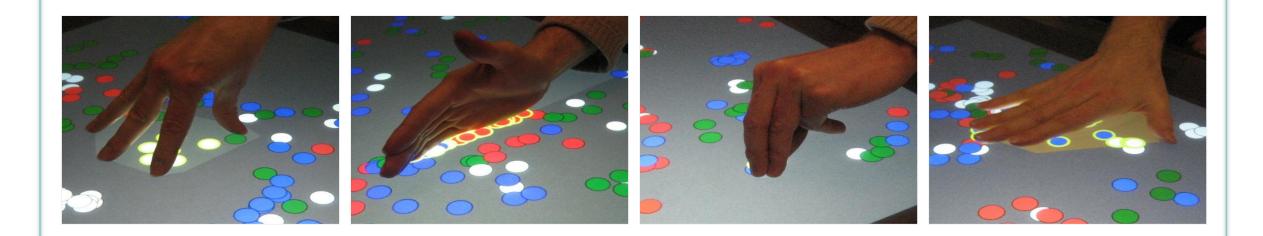

Participants

- 32 (25 male, 7 female)
- All users do the Surface, and *either* mouse or physical
 - Mouse + Surface (MS)
 - Surface + Mouse (SM)
 - Physical + Surface (PS)
 - Surface + Physical (SP)

Data for 32 Surface, 16 Mouse, 16 Physical

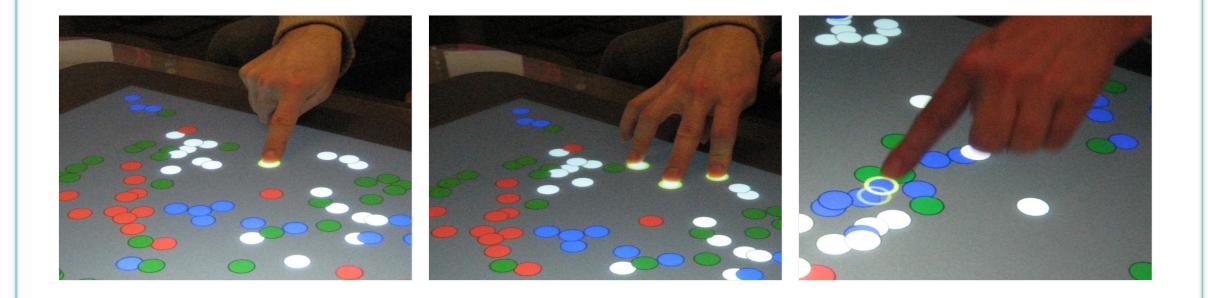


- 1. Separate blue and white chips into clusters
- 2. Spread blue cluster so no 2 circles overlap
- 3. Timed clustering

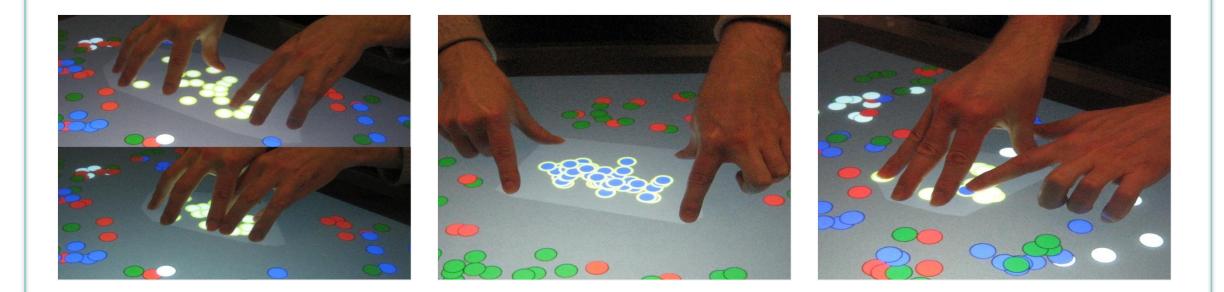


1. Gesture sets from Task 1 & 2

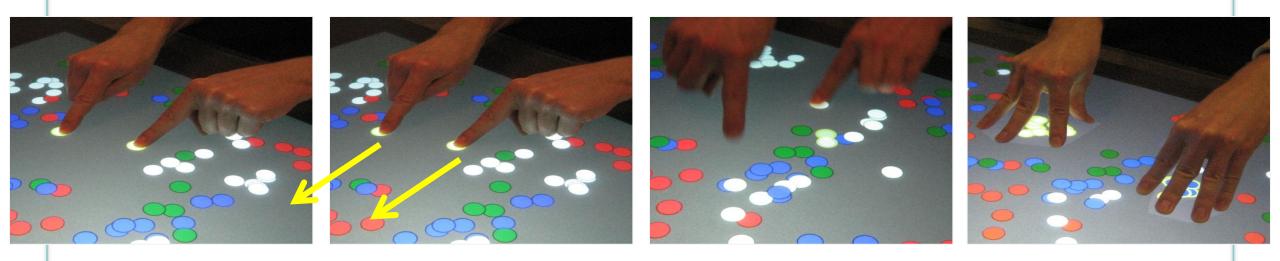
- From video analysis in physical & surface condition
- Both successful & unsuccessful gestures
- 2. Timing results from Task 3
 - Analyzed with a 2x2 mixed Anova
- 3. Participant comments


1. One handed – applied to a group

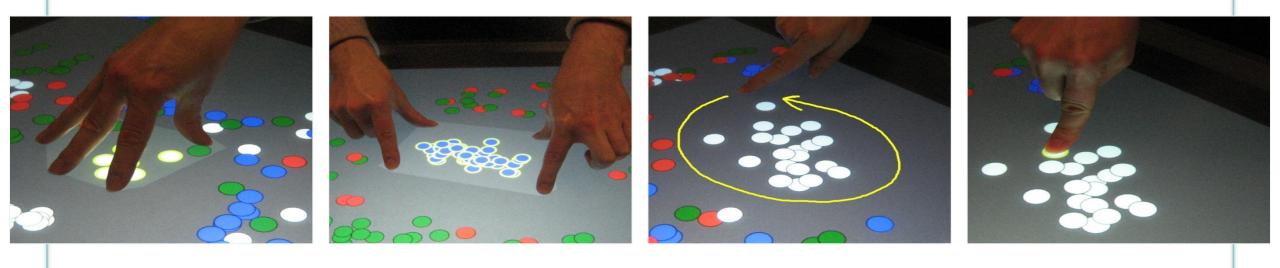
- Splayed hand pushes pieces
- One hand shove
- Pinch
- Hand and palm


2. One handed – applied to single item

- Drag single item
- Select single items with multiple fingers
- Toss single object


3. Two handed – applied to single group

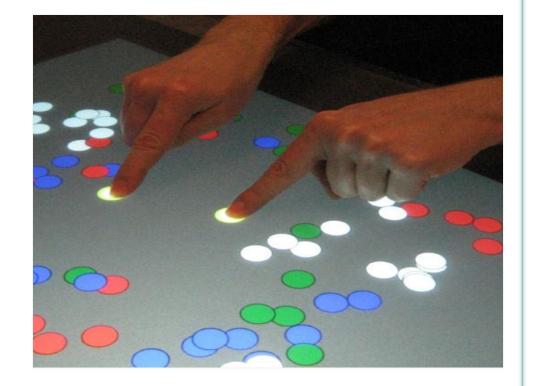
- Both hands coalesce large group to small
- Two-hand transport
- Add/remove from selection


4. Two handed – applied to > 1 group

- Drag two objects with pointer fingers
- Two hands grab points in sync
- Rhythmic use of both hands
- Two hands grab groups

5. Surface Only

- One hand hull manipulation
- Two-hand hull manipulation
- Treat finger like a mouse
- Push hard to multi-select


6. Physical Only

- Lift up
- Go outside the lines
- Slide around objects
- Texture-based
- Toss chips between hands
- Drag and drop some chips on the way

Gesture Use

- Fingertip-based most popular
- Difference based on starting condition
 - Starting in physical: 88%
 - Starting in mouse/surface: 56%/50%
- 70% used multiple hands for >1 group
- On Surface many used fingers as a mouse
 - Starting in mouse: 50%
 - Starting in physical: 25%

Timing Results

Surface is sign. faster than Mouse

- Surface: 116s, Mouse 134s, (F_{1,14}=6.10, p=.027)
- No effect of cond. order (F_{1,14}=9.28, p=.352)

Physical is sign. faster than Surface

- Physical: 89s, Surface: 120s (F_{1,14}=11.96, p=.004)
- Sign. effect for cond. order (PS < SP) ($F_{1,14}$ =11.482, p<.001)

Impact of first condition

• Participants starting in Physical sign. faster on Surface (PS < MS) (t_{1,2}=2.38, p<.035)

Surface perceived as sign. easier than Mouse

• No effect between Physical/Surface

88% preferred clustering task on Surface compared to Mouse

• 44% preferred Surface to Physical

Perceived advantages

- Physical: tactile feedback
- Surface: drag over circles, two handed interaction
- Mouse: select dispersed circles

Discussion

- Participants showed influence of previous condition
 - Gestures sets and work speed influenced
- Multi-touch grouping was common
- Two-handed interaction common
 - Wide variety of co ordinations (in sync, in parallel, ...)

Microsoft[®]

© 2010 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Microsoft[®] Research Faculty Summit2010