Microsoft[®] Research Faculty Summit 2010

Microsoft[®] Research Faculty Summit 2010

Natural User Interfaces with speech

Alex Acero Speech Technology Group Microsoft Research Redmond

Kinect: Gesture Recognition with 3D camera

Kinect: Voice Control

Kinect: Speech recognition

- Speech recognition
 - Complementary to gesture
 - Want to talk to your animal
 - Voice control without on-screen buttons
 - Access long lists
- From headsets to hands free
 - Needs relatively good quality audio!
 - Loud gaming sounds from Xbox
 - Noise and reverberation in the room

Outline

- Audio processing
- Voice Search
- Robust Voice Control
- Voice interfaces for the automobile
- Voice dialogs
- Error Correction
- Other speech interfaces

Audio Stack

Audio Stack

Directional Microphones

- Acoustical design
 - Using the enclosure shape to increase the microphones directivity
- Optimized microphone array geometry
 - Non-equal spacing, covers the entire bandwidth

Mono Acoustic Echo Cancellation

- Acoustic echo cancellation
 - Mono AEC part of each speakerphone

Multichannel Acoustic Echo Cancellation

- Acoustic echo cancellation
 - "Stereo AEC has a non-uniqueness problem that presents a fundamental limitation" (Sondhi et al. Bell Labs, 1995)

Multichannel Acoustic Echo Cancellation Ivan Tashev 2008

- Acoustic echo cancellation
 - "Stereo AEC has a non-uniqueness problem that presents a fundamental limitation" (Sondhi et al. Bell Labs, 1995)
- Multichannel AEC
 - Use calibration pulses, lock mixing filters, use one adaptive filter
 - Reduces 15-20 dB echo
 - Entire audio pipeline: ~35 dB

Microphone array processing Ivan Tashev 2008

- Adaptive beamformer
 - Acts as a steerable directional microphone
 - Can suppress interferers as well
 - Reduces 3-6 dB noise
- Spatial filtering
 - Sound source localization per frequency bin
 - Suppresses sounds outside desired direction range
 - Suppresses 6-12 dB noise

End-to-end optimization Ivan Tashev 2008

- A chain of optimal processing blocks is suboptimal
- Optimization criterion:
 - Perceptual Evaluation of Sound Quality (PESQ)
- 25 parameters for optimization
 - Time constants, thresholds
- Parallelized processing on cluster
 - Large data corpus
- Results with speech recognizer

End-to-end optimization

Outline

- Audio processing
- Voice Search
- Robust Voice Control
- Voice interfaces for the automobile
- Voice dialogs
- Error Correction
- Other speech interfaces

Voice search for FAQ

Speak	Cancel	
1 64		
		L3

Voice Search architecture

Geoff Zweig, Xiao Li, Patrick Nguyen 2007

Click-Driven Automated Feedback

Outline

- Audio processing
- Voice Search
- Robust Voice Control
- Voice interfaces for the automobile
- Voice dialogs
- Error Correction
- Other speech interfaces

Building Accurate Voice UI is hard

• Traditional Context Free Grammar (CFG):

<one-of>

<item> business search </item>

<item> search </item>

<item> biz search </item>

<item> driving directions </item>

<item> directions </item>

<item> traffic </item>

<item> tell me my choices </item>

<item> What are my options </item>

</one-of>

•••

• Easy to write but fragile

Data driven speech understanding

Example-based SLM

- Interpolation of
 - Large general domain bigram model
 - Small domain specific bigram model through backoff state
- Robust SLM with little in-domain data

Information Retrieval (TF-IDF)

- TF-IDF: No need for training data
- If training data is available we can learn a classifier instead
 - Linear classifier. Score for class *i*:

$$S_i = \sum_{j=1}^N \lambda_{ij} f_j$$

- Binary feature f_i : Does word "ticket" occur in class "Reservations"?
- Weights λ_{ij} are trained through Maximum Entropy

Outline

- Audio processing
- Voice Search
- Robust Voice Control
- Voice interfaces for the automobile
- Voice dialogs
- Error Correction
- Other speech interfaces

SMS in Cars (Ford SYNC)

- SMS are commonly used
- But sending SMS while driving is dangerous
 - and illegal in many countries
- Ford SYNC reads SMS using TTS
- Most SMS only require short replies

FORD SYNC Canned SMS

I'll be late MEETING CANCELLED CAN'T TALK RIGHT NOW CALL ME WHERE R YOU? I NEED MORE DIRECTIONS THANKS I AGREE I DISAGREE I'M STUCK IN TRAFFIC C U IN 5(10,15,20) MINUTES

I LOVE YOU TOO FUNNY WHAT DO YOU THINK? ON MY WAY YOU ARE THE BEST CALL U LATER YES NO WHY? **TELL ME MORE** CAN'T WAIT TO SEE YOU

SMS Dictation using voice search

Incoming Message

Press the button and then use speech to reply the message

6

Try Another SMS

Suggested Reply

CommuteUX

Ivan Tashev, Mike Seltzer, YC Ju, 2009

Outline

- Audio processing
- Voice Search
- Robust Voice Control
- Voice interfaces for the automobile
- Voice dialogs
- Error Correction
- Other speech interfaces

Problems with directed dialogs

Who manages the Dialog?

Directed Dialog

- "Who would you like to contact?"
- Finite State Machine
- Simple CFG
- MSConnect

Initiative

User Initiative Dialog

- □ "What can I do for you?"
- □ Ngrams
- Windows Airlines

User-initiative dialogs

• Pros:

- Can result in a shorter call
- Can feel more natural
- Useful when too many choices
- Cons:
 - Requires expensive expertise
 - Could lead to user frustration: system appears human but caller can't use full natural language

airline traveler journey: a trip

At each stage:

What are the callers *immediate needs*? Which *set of tasks* do they want to perform? How can we use what we already know to *shorten the process*?

Design for the user Tellme circa 2000

Situated interactions Dan Bohus 2009

Outline

- Audio processing
- Voice Search
- Robust Voice Control
- Voice interfaces for the automobile
- Voice dialogs
- Error Correction
- Other speech interfaces

Outline

- Audio processing
- Voice Search
- Robust Voice Control
- Voice interfaces for the automobile
- Voice dialogs
- Error Correction
- Other speech interfaces

Utterance Verification in Games

- Engines will typically assign similar scores to "A Happy Go Lucky Guy" and "A Happy Go Lucky Man"
- Word-dependent utterance verification

Speech in Education Xiaolong Li, 2007

VerbalMath Xiao Li, 2008

Summary

- Speech for gaming applications require clean audio
- Robust voice control requires flexible grammars
- Voice interface is an interdisciplinary field:
 - Use context
 - Think about the user and collect real data

Thank you

Microsoft[®]

© 2010 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.