

“Computational thinking is a way of
solving problems, designing systems,
and understanding human behavior
that draws on concepts fundamental to
computer science.”

— Jeannette Wing

How can I save

Peter’s life?

Fast algorithms for
optimizing n-way organ
exchange will be
adopted by UNOS

By thinking computationally (that is,
abstracting the problem, understanding
the consequences of scale, and
applying algorithmic concepts), we
extract simplicity from complexity and,
in this case, save lives.

http://computationalthinking.org

Apply algorithmic concepts to understand, explain, solve,
and debug problems, processes, and interactions

Understand the consequences of scale in terms of both
engineering and societal impact

Make use of abstractions at multiple levels, to control
complexity and collaborate more effectively

…

Apply algorithmic concepts to understand, explain, solve,
and debug problems, processes, and interactions

recursion, divide-and-conquer, dynamic programming, …

Understand the consequences of scale in terms of both
engineering and societal impact

exponential growth, greedy vs global, Metcalfe’s Law, …

Make use of abstractions at multiple levels, to control
complexity and collaborate more effectively

applied logic, languages, …

…

Workshop series: Computational Thinking for Everyone

“…revolutionary science and engineering research
outcomes made possible by innovations and
advances in computational thinking…”

A sample of research and education activities in the Center
for Computational Thinking

Called PROBEs, for PROBlem-oriented Explorations, each
explores and/or demonstrates the value of computational
thinking, in

drug discovery

parallel computing

music and the arts

Example: HIV-1 Protease (HIV PR)

What is Drug Design?

Finding a compound that:
Binds to target molecule

Inhibits function of target

What is Resistance?

A set of mutations to target that:
Inhibits binding of drug

Preserves function of target
image source: wikipedia

HIV PR and drug

Can we design compounds that bind to, and inhibit
function of target molecule --- and all viable mutants?

Mutant 1 Mutant n

Abstraction #1

2-player Game: Pharma vs. Virus

A resistance-evading drug is a “checkmate”

Moves:

Pharma moves by introducing/modifying compound

Virus moves by introducing mutations

Note: Pharma can anticipate virus’ moves, but not vice-versa

Move Evaluator

Nature’s function: (changes in) Free Energy

Abstraction #2

Computing free energies , probabilistic inference

Statistical Physics tells us how to derive free energies from the
probability distribution over configuration space

We can efficiently represent these probability distributions
using undirected probabilistic graphical models

Free energies are computed via (generalized) belief
propagation (BP)

BP

MRF

Free Energy

(move evaluator)

Tasks:

Classification: does mutation M confer resistance to drug D?

Regression: quantitative accuracy of predicted free energies

Data:

7 commercially available drugs

Wild-type + 14 mutants known to confer resistance

Accuracy:

Classification: 71% accuracy (sens = 68%; spec = 100%)

Regression: 0.9 kcal/mol

18

Andrew Chien, 2008

Building the hardware?

Developing good programming languages or extensions to
existing languages?

Developing efficient parallel algorithms?

Developing good compilers, run-time systems,
and debuggers?

Developing good OS support?

Rewriting the existing code base?

Educating programmers to “think parallel”?

As with “Computational Thinking” in general, “Parallel
Thinking” is not a set of ad-hoc libraries, programming
languages, and interfaces to learn, it is a set of core ideas
and a way of approaching problems.

If explained at the right level of abstraction many
algorithms are naturally parallel? We currently brainwash
programmers to think sequentially.

Conjecture: If done right with appropriate knowledge
parallel programming might be as easy as sequential
programming for many uses?

procedure QUICKSORT(S):

if S contains at most one element then return S

else

begin

choose an element a randomly from S;

let S1, S2 and S3 be the sequences of

elements in S less than, equal to,

and greater than a, respectively;

return (QUICKSORT(S1) followed by S2

followed by QUICKSORT(S3))

end
Two forms of natural parallelism

{e in S | e < a};

S = [2, 1, 4, 0, 3, 1, 5, 7]

F = S < 4 = [1, 1, 0, 1, 1, 1, 0, 0]

I = addscan(F) = [0, 1, 2, 2, 3, 4, 5, 5]

where F

R[I] = S = [2, 1, 0, 3, 1]

Each element gets sum of

previous elements.

Seems sequential?

[2, 1, 4, 2, 3, 1, 5, 7]

[3, 6, 4, 12]
sum

recurse
[0, 3, 9, 13]

[2, 7, 12, 18]
sum

interleave

[0, 2, 3, 7, 9, 12, 13, 18]

Educating programmers and researchers on parallelism
is key.

We need to identify the “core” ideas in parallel thinking and
concentrate on these.

Perhaps we can teach parallelism from day 1 and without
much more effort than teaching sequential computing.

Everyone likes music

Most just listen, but many play

Music Merchants: $8B, 5M instruments (US, 2006)

Sound reinforcement: $1.5B (US, 2006)

Audacity Audio Editor (Dannenberg & Mazzoni): 1M/month

Computation can enhance the musical experience by
providing automated, live, musical partners

Real-time performance synchronized to human musicians

Assumes quasi-steady tempo

research: characterize tempo variation in human performance

Uses foot-tapping to give the beat to the computer

research: interfaces and methods for tempo acquisition and cues

Uses pre-recorded audio (20 instruments in real time)

research: high-quality, low-latency, time-variable, ensemble
time stretching

Interface, interface, interface

Sensing

Display

Computational Thinking and the Digital Music Stand

Tablet PC and smaller platforms (Kindle? Cell phones?)

Capture music notation as digital photos

Record all rehearsals

“Learn the music” for page turns, etc.

Feedback: location, intonation, cues

Golan Levin
Director, Studio for Creative Inquiry
Carnegie Mellon University

… a Director

Golan Levin
Director, Studio for Creative Inquiry
Carnegie Mellon University

… an
Artist/Engineer

Golan Levin
Director, Studio for Creative Inquiry
Carnegie Mellon University

“Studio Arts courses in Computer Science”

Where the medium is code,
but the objective is self-expression

Introduction to Computational Form

Information Visualization as Personal Inquiry

Interactive Technologies for Live Performance

Audiovisual Systems and Machines

Generative & Digital Fabrication

Golan Levin
Studio for Creative Inquiry
Carnegie Mellon University

There is no category for
“art software”
in this landscape.

We’re too slow to acknowledge that
Computation and Culture exist in feedback

Computing influences the evolution of culture

Culture motivates and prompts advances in computing

“Culture” = people communicating together

A pervasive belief that
software is made by someone else

A pervasive belief that
software is made by someone else

Generally, we can’t even pimp it
the way we can pimp our cars

Just as true literacy in English means
being able to write as well as read …

Just as true literacy in English means
being able to write as well as read …

True literacy in software demands not only knowing
how to use commercial software tools, but also
how to create new software for oneself and for others

CS departments should not have the monopoly
on teaching programming

Programming (an everyday skill) and
Computer Science (a research subject) are different

Computer scientists are not necessarily good at
teaching programming to people from other disciplines
(who may have very different motivations for learning)

Actionscript/Flash (Adobe)

Extendscript (Adobe)

Alice (CMU)

Hackety Hack

Max / MSP / Jitter

openFrameworks (C++)

Processing (Java)

PureData

Scratch

Silverlight

VVVV

The significance of these tools is not theoretical

Each of these toolkits has 10K – 1M+ users

They have totally transformed the landscape
of which kinds of people are now writing code

People like: “artists, young people, and the rest of us”

Name
Title
Organization

Name
Title
Organization

Importing methods of arts pedagogy:

Curiosity-driven problem generation and solving

Individualized feedback for individual needs

Similar to a music instrument lesson

Name
Title
Organization

Name
Title
Organization

Name
Title
Organization

Golan Levin
Director, Studio for Creative Inquiry
Carnegie Mellon University

Many, many people want to learn to code

234 total registered attendees

Hailing from 7 countries (inc. France, Norway, …)

Hailing from 23 different American states
22% from Carnegie Mellon University

39% from Pittsburgh and Allegheny County

67% from East Coast + Rust Belt

Ages 11 through 75

35% female

So diverse, in fact…

“Is this event for developers, or kids?” yes…

“Is this event for developers, or artists?” yes…

“…” (sound of brain breaking)

Some introductions…

21 workshops in 11 different programming languages

Generally 10-20 students per workshop

About 1100 person-hours of learning in one weekend

Golan Levin
Director, Studio for Creative Inquiry
Carnegie Mellon University

Name
Title
Organization

Golan Levin
Director, Studio for Creative Inquiry
Carnegie Mellon University

Name
Title
Organization

Creators of these toolkits had never been gathered together

Topic: what motivated the creation of these toolkits

Topic: Feedback between user communities + features
(particularly for open-source toolkits)

Golan Levin
Director, Studio for Creative Inquiry
Carnegie Mellon University

Golan Levin
Director, Studio for Creative Inquiry
Carnegie Mellon University

Golan Levin
Director, Studio for Creative Inquiry
Carnegie Mellon University

Built with Ning, quickly grew to 500+ global members

Continues to grow, even months later

Symposium videos receiving thousands of views

All online… have a look!
artandcode.com

Golan Levin
Director, Studio for Creative Inquiry
Carnegie Mellon University

Golan Levin
Director, Studio for Creative Inquiry
Carnegie Mellon University

Name

Title

Organization

Partners

© 2009 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the

current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information

provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

