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A Distributed Systems Architecture for the 
1990’s 

Butler W. Lampson, Michael D. Schroeder and Andrew D. Birrell 

Most markets for computing are evolving towards distributed solutions. The sys-

tem framework that accommodates distributed solutions most gracefully is likely 

to dominate in the 1990’s. 

A leadership distributed system includes the best of today’s centralized systems, 

combining their coherence and function with the better cost/performance, growth, 

scale, geographic extent, availability, and reliability possible in distributed sys-

tems. 

To build such a system requires a distributed systems architecture as the frame-

work for a wide variety of products. The architecture specifies a set of standard 

services in a distributed system. Together these services make up an integrated 

system with global names, access, availability, security, and management, all 

working uniformly throughout the system. 

This report summarizes a complicated subject in only ten pages (not counting the 

appendix). We made it as short as we could. Please read it all. 
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1. WHY DISTRIBUTED SYSTEMS? 

A distributed system is several computers doing something together. Compared to 

a centralized system, a distributed system can 

• allow more widespread sharing of information and resources; 

• provide more cost-effective computing by using cheap workstation com-

puting cycles; 

• be more available and more reliable; 

• be more easily expanded and upgraded; 

• cover bigger areas and serve larger numbers of users. 

No wonder everybody wants a distributed system. 

Customers with computer networks based on protocol families such as DECnet 

or TCP/IP already get many of the benefits of distributed systems. These net-

works are widespread today. Customers have a taste of distributed computing, and 

they like it. There’s no turning back. Computing is going to be more and more 

distributed. 

But today’s networked systems are harder to use than their centralized prede-

cessors. Centralized systems provide many functions and a lot of systemwide co-

herence: all the resources of the system can be accessed and managed in the same 

way from any part of it. Today, the functions on a single computer don’t neces-

sarily work over the network For example, it may be impossible to let a colleague 

have access to a file if he is not registered locally. And many functions on the 

network don’t work the same way they do locally, and work differently from 

computer to computer. For example, for a user of a Unix system (even when using 

NFS), reading a local file is not the same as reading a remote file from another 

system over the network. In VMS, you can copy a remote file, but you can’t print 

it. 

Functionality and coherence decrease as networked systems get larger. To-

day’s large networked computer systems (and many small ones) are a set of inde-

pendent computers interconnected by a network, not an integrated distributed sys-

tem. Sharing among the computers is generally limited to mail transport, file 

transfer, and remote terminals. These sharing mechanisms can span many com-

puters because of the underlying packet-switching network, but they aren’t inte-

grated into the usual way of doing business within each system. A few integrated 

distributed applications have been developed. But basically each system in the 

network is still a world of its own, with its own user registrations, file system con-

figuration, and way of doing things. Customers exhibit a growing sense of frustra-

tion about the lack of function and coherence as their networked systems grow 

larger. No wonder no one is happy with the distributed system he’s got. 



 

 

The development of engineering workstations has made the problem worse, by 

increasing the rate at which computers are added to networks. Customers want 

workstations because they provide dramatically more cost-effective performance 

than time-sharing systems. Workstations also allow fine-grained expansion and 

upgrading. But having more computers forces more use of the poorly integrated 

remote functions. And from a management point of view each workstation is its 

own tiny time-sharing system: in large numbers they become a major headache. 

The redundancy and independent failure obtained by having many inter-

connected computers can be exploited to increase reliability and availability. But 

not many systems have the software needed to duplicate functions and provide 

smooth fail-over. In most of today’s distributed systems, a user doesn’t see non-

stop operation; instead, he may not be able to get his work done because of the 

failure of a computer he’s never even heard of. 

A leadership distributed system, then, is 

 
Figure 1: A leadership distributed system 

 

• A heterogeneous set of hardware, software, and data components, 

• whose size and geographic extent can vary over a large range, 



 

 

• connected by a network, 

• providing a uniform set of services (user registration, time, files, records, 

printing, program execution, mail, terminals), 

• with certain global properties (names, access, security, management and 

availability). 

The coherence that makes it a system rather than a collection of machines is a re-

sult of uniform services and global properties. The services are available in the 

same way to every part of the system, and the properties allow every part of the 

system to be viewed in the same way. Let’s see how close the state of the art is to 

this goal, and what we must do to reach it. 

2. SOME EXISTING PRODUCTS 

Current distributed system products offer either coherence or scale, but not both 

in the same system. They provide few fault-tolerant services and applications. 

Let’s review the capabilities of a few current product distributed systems: 

• Inter-connected time-sharing systems: Many of the currently available 

products are in reality collections of single- and multi-user timesharing sys-

tems using network technology to provide some inter-connection. This is 

true, for example, of systems composed of DECnet with VMS, Ultrix, etc., 

and of systems composed of TCP/IP with SunOS, NFS, etc. There are al-

most no fault tolerant services within this framework. There is little coher-

ence in the way resources and information are named, accessed, or man-

aged across the network. On the plus side, such systems admit a variety of 

computers and operating systems, are easily expandable, scale to very large 

numbers of computers, and can span the globe. 

• Tightly-coupled systems: Other systems, such as VAXclusters and Apollo 

Domain offer distribution with a high degree of coherence. For example, a 

VAXcluster provides a common file system, batch queue, print queues, us-

er registration, management, locking, etc. And the Domain system provides 

a system-wide shared virtual memory and file system However, there are 

not many fault-tolerant applications to run on this base. While these sys-

tems are incrementally expandable, the size limit is low and the geographic 

span is limited. For example, when upgrading the software in a VAXclus-

ter, all cluster members must run the same version of VMS. And all cluster 

members must be Vaxes. Similar restrictions apply in a Domain system. 

• Fault Tolerant Systems: Tandem is a leader in the use of local distribution 

to provide fault-tolerant applications. Their distributed systems are limited 

in other respects, but will certainly evolve towards the goals defined here. 



 

 

• IBM: CICS (Customer Information Control System) is an extremely suc-

cessful product offering remote invocation and distributed commit. In the 

future, IBM can be expected to build on its strengths in transaction pro-

cessing and personal computers. 

3. A LEADERSHIP DESIGN 

The industry can and will satisfy customers’ demands for increased function and 

coherence in distributed systems. The only question is which design will lead the 

way. The outlines of a 1990’s leadership design are easy to see: combine the vir-

tues of a centralized system with the virtues of distributed computing. Centralized 

systems offer function and coherence. Today’s distributed systems offer intercon-

nection, cost-effective computing, and growth. Tomorrow’s distributed systems 

can provide all these—function, coherence, interconnection, cost-effective com-

puting, and growth. In addition, they can offer new levels of availability and reli-

ability. 

4. A COHERENT DISTRIBUTED SYSTEM ARCHITECTURE 

To make a distributed system coherent and highly functional, we need a standard 

way of doing things and a set of standard services that pervade all the computers 

of the system. To provide these standards we need an architecture, which we will 

call the Coherent Distributed System Architecture, CDSA for short. The architec-

ture provides the homogeneity that makes the distributed system a system, rather 

than just a collection of computers. 

But this homogeneity doesn’t mean that all the components of the system must 

be the same. CDSA applies to a heterogeneous collection of computers running 

systems such as Unix, VMS, MS-DOS, and others. In short, all computers and 

operating systems can operate in this framework, even computers and systems 

from multiple vendors. The underlying network is a collection of Ethernets, new 

higher-speed LANs, bridges, routers, gateways, various types of long distance 

links, with connectivity provided by OSI transport and other protocols. 



 

 

 
Figure 2: Getting to a leadership distributed system 

CDSA provides global names, global access, global security, global manage-

ment, and global availability. “Global” means everywhere in the system. For ex-

ample, Digital’s internal engineering network, “EasyNet’ currently has about 

50,000 nodes and is growing rapidly. If it was converted to be a CDSA-based sys-

tem—call it “BetterNet”—then “global” would include all 50,000 of these com-

puters all over the world. 

CDSA scales over a wide range of system sizes and extents, from small, local 

installations with a few computers in one building to world-wide systems such as 

BetterNet with 50,000 or more computers. 

Let’s examine what these pervasive properties mean: 

• Global names: The same names work everywhere. Machines, users, files, 

distribution lists, access control groups, and services have full names that 

mean the same thing regardless of where in the system the names are used. 

For instance, Butler Lampson’s user name might be something like DEC . 

Eng . SRC. BWL throughout BetterNet. He will operate under that name 

when using any computer on BetterNet. Global naming underlies the abil-

ity to share things. 

• Global access: The same functions are usable everywhere with reasonable 

performance. If Butler sits down at a machine in Palo Alto, he can do eve-

rything there that he can do in Cambridge, with perhaps some small per-

formance degradations. For instance, Butler could command the printing 

facilities on a computer in Palo Alto to print a file stored on his computer 

in Cambridge. Global access also includes the idea of data coherence. Sup-

pose Butler is in Cambridge on the phone to Mike Schroeder in Palo Alto. 

Butler makes a change to a file and writes it. If they’re both on BetterNet, 

Mike will automatically be able to read the new version as soon as it has 



 

 

been written. Neither Mike nor Butler needs to take any special action to 

make this possible. 

• Global security: The same user authentication and access control work 

everywhere. For instance, Butler can authenticate himself to any computer 

on BetterNet; he can arrange for data transfer secure from eavesdropping 

and modification between any two BetterNet computers; and assuming that 

the access control policy permits it, Butler can use exactly the same Bet-

terNet mechanism to let the person next door and someone from another 

group read, his files. All the facilities that require controlled access—

logins, files, printers, management functions, etc.—use the same machinery 

to provide the control. 

• Global management: The same person can manage components any-

where. Obviously one person won’t manage all of BetterNet. But the sys-

tem should not impose a priori constraints on which set of components a 

single person can manage. All of the components of the system provide a 

common interface to management tools. The tools allow a manager to per-

form the same action on large numbers of components at once. For in-

stance, a single system manager could configure all the workstations in an 

organization without leaving his office. 

• Global availability: The same services work even after some failures. 

System managers get to decide (and pay for) the level of replication for 

each service. As long as the failures don’t exceed the redundancy provided, 

each service will go on working. For instance, a group might decide to du-

plicate its file servers but get by with one printer per floor. System-wide 

policy might dictate a higher level of replication for the underlying com-

munication network. On BetterNet, mail won’t need to fail between Palo 

Alto and Cambridge just because a machine goes down in Lafayette, Indi-

ana. 

The standard services defined by CDSA include the following: 

• Names: Access to a replicated, distributed database of global names and 

associated values for machines, users, files, distribution lists, access control 

groups, and services. A name service is the key CDSA component for 

achieving global names, although most of the work involved in achieving 

that goal is making all the other components of the distributed system use 

the name service in a consistent way. 

• Remote procedure call: A standard way to define and invoke service in-

terfaces. Allows service instances to be local or remote. 

• User registrations: Allows users to be registered and authenticated. Issues 



 

 

certificates permitting access to system resources and information. An ar-

chitecture such as Kerberos addresses some of this area, although Kerberos 

does not meet all of the requirements for CDSA. 

• Time: Consistent and accurate time globally. 

• Files: A replicated, distributed, global file service. Each component ma-

chine of the distributed system can make available the files it stores locally 

through this standard interface. Information stored in the name service to-

gether with file system clerk code running in client machines knits these 

various local files systems together into the coherent global file system. 

The file service specification should include standard presentations for the 

different VMS, Unix, etc. file types. For example, all implementations 

should support a standard view of any file as an array of bytes. There is 

presently no published architecture for a file service that meets CDSA’s re-

quirements. 

• Records: An extension of the file service to provide access to records, ei-

ther sequentially or via indexes, with record locking to allow concurrent 

reading and writing, and journalling to preserve integrity after a failure. 

• Printers: Printing throughout the network of documents in standard for-

mats such as Postscript and ANSI, including job control and scheduling. 

• Execution: Running a program on any machine (or set of machines) in the 

network, subject to access and resource controls, and efficiently schedul-

ing both interactive and batch jobs on the available machines, taking ac-

count of priorities, quotas, deadlines and failures. For many customers, the 

most cost-efficient, upgradable, available, reliable configurations include 

small numbers of medium- to large-sized cycle servers. The exact configu-

ration and utilization of cycle servers (not to mention idle workstations 

that can be used for computing) fluctuates constantly, so users and appli-

cations need automatic help in picking the machines on which to run. 

• Mailboxes: A computer message transport service, based on appropriate 

international standards. X.400 is probably adequate for defining this service. 

• Terminals: Access to a windowing graphics terminal from a computation 

anywhere in the network. X-windows is a suitable architecture for this 

service. 

• Accounting: System-wide collection of data on resource usage which can 

be used for billing. 

CDSA includes a specification of the interface to each of these services. The in-

terface defines the operations to be provided, the parameters of each, and the de-



 

 

tailed semantics of each relative to a model of the state maintained by the service. 

The specification is normally represented as an RPC interface definition. 

Each service can be provided in multiple implementations, but all must con-

form to the specified interfaces. CDSA also must specify how each service will 

provide the five pervasive properties: global names, global access, global security, 

global management, and global availability. 

Our definition of a distributed system assumes a single set of interfaces for the 

standard services and global properties. For example, every component of the sys-

tem can be named, accessed, and managed in the same way. Further, every com-

ponent that provides or consumes a service, such as file storage or printing, does 

so through the same interface. There still may be several implementations of the 

interfaces for naming, management, files, etc., and this variety allows the system 

to be heterogeneous. In its interfaces, however, the system is homogeneous. 

It is this homogeneity that makes it a system with predictable behavior rather 

than a collection of components that can communicate. If more than one interface 

exists for the same function, it is unavoidable that the function will work differ-

ently through the different interfaces. The system will consequently be more 

complicated and less reliable. Perhaps some components will not be able to use 

others at all because they have no interface in common. Certainly customers and 

salesmen will find it much more difficult to configure workable collections of 

components. 

In reality, of course, there is no absolute distinction between a system and a 

collection of components. A system with more different ways of doing the same 

thing, whether it is naming, security, file access, or printing, is less coherent and 

dependable. On the other hand, it can still do a lot of useful work. The evils of 

heterogeneous interfaces can be mitigated by gateways, components that map 

from one interface to another. A gateway is often necessary when two systems 

evolve separately and later must be joined into one. An obvious example is the 

conjunction of IBM’s System Network Architecture (SNA) and Digital’s DECnet, 

and indeed there are already several DECnet/SNA gateways. 

5. BENEFITS OF CDSA 

A system conforming to CDSA will be of enormous benefit to customers: 

• A system can contain a variety of hardware and software from a variety of 

vendors who each support CDSA.. 

• A system can be configured to have no single point of failure. The cus-

tomer gets service nearly all the time, even when some parts of the system 

are broken. 

• A system can grow by factors of thousands (or more), from a few comput-



 

 

ers to 100,000. It can grow a little at a time. Nothing needs to be discard-

ed. 

• Managers and users of that large collection of components can think of it 

as a single system, in which there are standard ways to do things every-

where. Resources can be shared—especially the data they store—even 

when the computers are physically separate, independently managed, and 

different internally. 

Customers will view CDSA as different from an integrated system such as VAX-

clusters or Domain because it allows a bigger system and supports multiple ma-

chine architectures and multiple operating systems. They will view CDSA as dif-

ferent from a network system such as DECnet, or Sun’s current offerings because 

it defines all the services of a complete system and deals effectively with security, 

management, and availability. 

CDSA has significant internal benefits to the vendors as well. It provides a 

standard set of interfaces to which they can build a variety of cost-effective im-

plementations over a long time periodt. It provides building blocks that allow 

product teams to concentrate more on added value rather than base mechanisms. 

It produces systems that are easier to configure, sell, and support. 

APPENDIX: MODELS FOR CDSA 

Defining a Coherent Distributed Systems Architecture is feasible now because 

experience and research have suggested a set of models for achieving global nam-

ing, access, security, management, and availability. For each of these pervasive 

properties, we describe the general approach that seems most promising. This 

Appendix goes into more technical detail than the body of the report; feel free to 

skip it if you are not interested. 

A. Naming model 

Every user and client program sees the entire system as the same tree of named 

objects with state. A global name is interpreted by following the named branches 

in this tree starting from the global root. Every node has a way to find a copy of 

the root of the global name tree. 

For each object type there is some service, whose interface is defined by 

CDSA, that provides operations to create and delete objects of that type and to 

read and change their state. 

The top part of the naming tree is provided by the CDSA name service. The 

objects near the root of the tree are implemented by the CDSA name service. A 

node in the naming tree, however, can be a junction between the name service and 

some other service, e.g. a file service. A junction object contains: 



 

 

• a set of servers for the named object 

• rules for choosing a server 

• the service ID, e.g. CDSA File Service 2.3 

• an object parameter, e.g. a volume identifier. 

To look up a name through a junction, choose a server and call the service inter-

face there with the name and the object parameter. The server looks up the rest of 

the name. The servers listed in a junction object are designated by global names. 

To call a service at a server the client must convert the server name to something 

more useful, like the network address of the server machine and information on 

which protocols to use in making the call. This conversion is done with another 

name lookup. A server object in the global name tree contains: 

• a machine name 

• a “protocol tower”. 

A final name lookup maps the (global) machine name into the network address 

that will be the destination for the actual RPC to the service. 



 

 

 
 

Figure 3: Top portion of a BetterNet global name space 

Figure 3 gives an example of what the top parts of the global name space for 

BetterNet (the EasyNet replacement based on CDSA) might look like. An im-

portant part of the CDSA is designing the top levels of the global name space. 



 

 

Consider some of the objects named in Figure 3. DEC, DEC . ENG , and DEC 

. ENG . SRC are directories implemented by the CDSA name service. DEC . SRC 

. ENG . BWL is a registered user of BetterNet, also an object implemented by the 

CDSA name service. The object DEC . ENG . SRC . BWL contains a suitably 

encrypted password, a set of mailbox sites, and other information that is associat-

ed with this system user. DEC .ENG. SRC . staff is a group of global names. 

Group objects are provided by the CDSA name service to implement things like 

distribution lists, access control lists, and sets of servers. 

DEC . ENG . SRC . bin is a file system volume. Note that this object is a junc-

tion to the CDSA file service. Figure 3 does not show the content of this junction 

object, but it contains a group naming the set of servers implementing this file 

volume and rules for choosing which one to use, e.g., first that responds. To look 

up the name DEC . ENG . SRC . bin .1s, for example, the operating system on a 

client machine traverses the path DEC .ENG. SRC . bin using the name service. 

The result at that point is the content of the junction object, which then allows the 

client to contact a suitable file server to complete the lookup. 

B. Access model 

Global access means that a program can run anywhere in a CDSA-based distrib-

uted system (on a compatible computer and operating system) and get the same 

result, although the performance may vary depending on the machine chosen. 

Thus, a program can be executed on a fast cycle server in the machine room while 

still using files from the user’s personal file system directory on another machine. 

Thus, a VMS printing program can print a file that is stored in a different machine 

or duster. 

Achieving global access requires allowing all elements of the computing envi-

ronment of a program to be remote from the computer where the program is exe-

cuting. All services and objects required for a program to run need to be available 

to a program executing anywhere in the distributed system. For a particular user, 

“anywhere” includes at least: 

• on the user’s own workstation; 

• on public workstations or compute servers in the user’s management do-

main; 

• on public workstations in another domain on the user’s LAN; 

• on public workstations across a low-bandwidth WAN. 

The first three of these ought to have uniformly good performance. Some perfor-

mance degradation is probably inevitable in the fourth case, but attention should 

be paid to making the degradation small. 



 

 

In CDSA, global naming and standard services exported via a uniform RPC 

mechanism provide the keys to achieving global access. All CDSA services ac-

cept global names for the objects on which they operate. All CDSA services are 

available to remote clients. Thus, any object whose global name is known can be 

accessed remotely. In addition, we must arrange that programs access their envi-

ronments only by using the global names of objects. This last step will require a 

thorough examination of the computing environment provided by each existing 

operating system to identify all the ways in which programs can access their envi-

ronment. For each way identified a mechanism must be designed to provide the 

global name of the desired object. For example, in Unix systems that operate un-

der CDSA, the identities of the file system root directory, working directory, and 

/tmp directory of a process must be specified by global names. Altering VMS, 

Unix, and other operating systems to accept global names everywhere will be a 

major undertaking, and is not likely to happen in one release. As a result, we must 

expect incremental achievement of the global access goal. 

Another aspect of global access is making sure CDSA services specify opera-

tion semantics that are independent of client location. For example, any service 

that allows read/write sharing of object state between clients must provide a data 

coherence model that is insensitive to client and server location. Depending on the 

nature of the service, it is possible to trade off performance, availability, scale, 

and coherence. 

In Digital’s DNS name service, for example, the choice is made to provide per-

formance, availability, and scale at the expense of coherence. A client update to 

the name service database can be made by contacting any server. After the client 

operation has completed, the server propagates the update to object replicas at 

other servers. Until propagation completes, different clients can read different 

values for the object. But this lack of coherence increases performance by limiting 

the client’s wait for update completion; increases availability by allowing a client 

to perform an update when just one server is accessible; and increases scale by 

making propagation latency not part of the visible latency of the client update op-

eration. For the objects that the DNS name server will store, this lack of coher-

ence is deemed acceptable. The data coherence model for the name service care-

fully describes the loose coherence invariants that programmers can depend upon, 

thereby meeting the requirement of a coherence model that is insensitive to client 

and server location. 

On the other hand, the CDSA file service probably needs to provide consistent 

write sharing, at some cost in performance, scale, and availability. Many pro-

grams and users are accustomed to using the file system as a communication 

channel between programs. Butler Lampson may store a document in a file from 

his Cambridge workstation and then telephone Mike Schroeder in Palo Alto to say 



 

 

the new version of the document is ready. Mike will be annoyed if then fetching 

that file into his Palo Alto workstation produces the old version of the document. 

File read/write coherence is also important among elements of a distributed com-

putation running, say, on multiple computers on the same LAN. Most existing 

distributed file systems that use caching to gain performance do not have data co-

herence, e.g. Sun’s NFS. 

C. Security model 

Security is based on three notions: 

• Authentication: for every request to do an operation, the name of the user 

or computer system which is the source of the request is known reliably. 

We call the source of a request a “principal”. 

• Access control: for every resource (computer, printer, file, database, etc.) 

and every operation on that resource (read, write, delete, etc.), it’s possible 

to specify the names of the principals allowed to do that operation on that 

resource. Every request for an operation is checked to ensure that its prin-

cipal is allowed to do that operation. 

• Auditing: every access to a resource can be logged if desired, as can the 

evidence used to authenticate every request. If trouble comes up, there is a 

record of exactly what happened. 

To authenticate a request as coming from a particular principal, the system must 

determine that the principal originated the request, and that it was not modified on 

the way to its destination. We do the latter by establishing a “secure channel” be-

tween the system that originates the request and the one that carries it out. A se-

cure channel might be a physically protected piece of wire, but practical security 

in a distributed system requires encryption to secure the communication channels. 

The encryption must not slow down communication, since in general it’s too hard 

to be sure that a particular message doesn’t need to be encrypted. So the security 

architecture includes methods of doing encryption on the fly, as data flows from 

the network into a computer. 

To determine who originated a request, it’s necessary to know who is on the 

other end of the secure channel. If the channel is a wire, the system manager 

might determine this, but usually it’s done by having the principal at the other end 

demonstrate that it knows some secret (such as a password), and then finding out 

in a reliable way the name of the principal that knows that secret. CDSA’s securi-

ty architecture specifies how to do both these things. It’s best if you can show that 

you know the secret without giving it away, since otherwise the system you au-

thenticated to can impersonate you. Passwords don’t have this property, but it can 



 

 

be done using public-key encryption. 

It’s desirable to authenticate a user by his possession of a device which knows 

his secret and can demonstrate this by public-key encryption. Such a device is 

called a ‘‘smart card”. An inferior alternative is for the user to type his password 

to a trusted agent. To authenticate a computer system, we need to be sure that it 

has been properly loaded with a good operating system image; CDSA must speci-

fy methods to ensure this. 

Security depends on naming, since access control identifies the principals that 

are allowed access by name. Practical security also depends on being able to have 

groups of principals (e.g., the Executive Committee, or the system administrators 

for the S TAR cluster). Both these facilities are provided by DNS. To ensure that 

the names and groups are defined reliably, digital signatures are used to certify 

information in DNS; the signatures are generated by a special “certification au-

thority” which is engineered for high reliability and kept off-line, perhaps in a 

safe, when its services are not needed. Authentication depends only on the small-

est sub-tree of the full DNS naming tree that includes both the requesting princi-

pal and the resource; certification authorities that are more remote are assumed to 

be less trusted, and cannot forge an authentication. 

D. Management model 

System management is adjustment of system state by a human manager. Man-

agement is needed when satisfactory algorithmic adjustments cannot be provided; 

when human judgement is required. The problem in a large-scale distributed sys-

tem is to provide each system manager with the means to monitor and adjust a 

fairly large collection of geographically distributed components. 

The CDSA management model is based on the concept of domains. Every 

component in a distributed system is assigned to a domain. (A component is a 

piece of equipment or a piece of management-relevant object state.) Each domain 

has a responsible system manager. To keep things simple, domains are disjoint. 

Ideally a domain would not depend on any other domains for its correct operation. 

Customers will require guidelines for organizing their systems into effective 

management domains. Some criteria for defining a domain might be: 

• components used by a group of people with common goals; 

• components that a group of users expects to find working; 

• largest pile of components under one system manager; 

• pile of components that isn’t too big. 

A user ought to have no trouble figuring out which system manager to complain 



 

 

to when something isn’t working satisfactorily. That manager ought to have some 

organizational incentive to fix the user’s problem. 

CDSA requires that each component define and export a management inter-

face, using RPC if possible. Each component is managed via RPC calls to this in-

terface from interactive tools run by human managers. Some requirements for the 

management interface of a component are: 

• Remote access: The management interface provides remote access to all 

system functions. Local error logs are maintained that can be read from 

the management interface. A secure channel is provided from 

management tools to the interface. No running around by the manager is 

required. 

• Program interface: The management interface of a component is designed 

to be driven by a program, not a person. Actual invocation of management 

functions is by RPC calls from management tools. This allows a manager 

to do a lot with a little typing. A good management interface provides end-

to-end checks to verify successful completion of a series of complex ac-

tions and provides operations that are independent of initial component 

state to make it easier to achieve the desired final state. 

• Relevance: The management interface should operate only on manage-

ment- relevant state. A manager shouldn’t have to manage everything. In 

places where the flexibility is useful rather than just confusing, the man-

agement interface should permit decentralized management by individual 

users. 

• Uniformity: Different kinds of components should strive for uniformity in 

their management interfaces. This allows a single manager to control a 

larger number of kinds of components. 

The management interfaces and tools make it practical for one person to manage 

large domains. An interactive management tool can invoke the management inter-

faces of all components in a domain. It provides suitable ways to display and cor-

relate the data, and to change the management-relevant state of components. 

Management tools are capable of making the same state change in a large set of 

similar components in a domain via iterative calls. To provide the flexibility to 

invent new management operations, some management tools support the con-

struction of programs that call the management interfaces of domain components. 

E. Availability Model 

To achieve high availability of a service there must be multiple servers for that 



 

 

service. If these servers are structured to fail independently, then any desired de-

gree of availability can be achieved by adjusting the degree of replication. 

Recall from the naming model discussion that the object that represents a ser-

vice includes a set of servers and some rules for choosing one. If the chosen serv-

er fails, then the client can fail-over to a backup server and repeat the operation. 

The client assumes failure if a response to an operation does not occur within the 

timeout period. The timeout should be as short as possible so that the latency of 

an operation that fails-over is comparable to the usual latency. 

To achieve transparent fail-over from the point of view of client programs, a 

service is structured using a clerk module in the client computer. With a clerk, the 

client program makes a local call to the clerk for a service operation. The clerk 

looks up the service name and chooses a server. The clerk then makes the RPC 

call to the chosen server to perform the operation. Timeouts are detected by the 

clerk, which responds by failing over to another server. The fail-over is transpar-

ent to the client program. 

As well as implementing server selection and fail-over, a clerk can provide 

caching and write behind to improve performance, and can aggregate the results 

of multiple operations to servers. As simple examples of caching, a name service 

clerk might remember the results of recently looked up names and maintain open 

connections to frequently used name servers. Write-behind allows a clerk to batch 

several updates as a single server operation which can be done asynchronously, 

thus reducing the latency of operations at the clerk interface. 

As an example of how a clerk masks the existence of multiple servers, consider 

the actions involved in listing the contents of DEC . ENG . SRC .udir .BWL . 

Mail . inbox a CDSA file system directory. (Assume no caching is being used.) 

The client program presents the entire path name to the file service clerk. The 

clerk locates a name server that stores the root directory and presents the complete 

name. That server may store the directories DEC and DEC . ENG. The directory 

entry for DEC . ENG . SRC will indicate another set of servers. So the first 

lookup operation will return the new server set and the remaining unresolved path 

name. The clerk will then contact a server in the new set and present the unre-

solved path SRC .udir . BWL . Mail . inbox. This server discovers that SRC. udi r 

is a junction to a file system volume, so returns the junction information and the 

unresolved path name udir . BWL .mail inbox. Finally, the clerk uses the junction 

information to contact a file server, which in this example actually stores the tar-

get directory and responds with the directory contents. What looks like a single 

operation to the client program actually involves RPCs to three different servers 

by the clerk. 

For servers that maintain state that can be write-shared among multiple clients, 



 

 

providing high availability is complex. An example is a replicated file service 

such as needed for CDSA. The essential difficulties are arranging that no writes 

get lost during fail-over from one server to another, and that a server that has been 

down can recover the current state when it is restarted. Combining these require-

ments with caching and write-behind to obtain good performance, without sacri-

ficing consistent sharing, can make implementing a highly available service quite 

challenging. 
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