The Label Complexity of Mixed-Initiative Classifier Training

Proceedings of the 33rd International Conference on Machine Learning |

论文与出版物 | 论文与出版物

Mixed-initiative classifier training, where the human teacher can choose which items to label or to label items chosen by the computer, has enjoyed empirical success but without a rigorous statistical learning theoretical justification. We analyze the label complexity of a simple mixed-initiative training mechanism using teaching dimension and active learning. We show that mixed-initiative training is advantageous compared to either computer-initiated (represented by active learning) or human-initiated classifier training. The advantage exists across all human teaching abilities, from optimal to completely unhelpful teachers. We further improve classifier training by educating the human teachers. This is done by showing example optimal teaching sets to the human teachers. We conduct Mechanical Turk human experiments on two stylistic classifier training tasks to illustrate our approach.