The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
- Sebastian Gehrmann ,
- Tosin Adewumi ,
- Karmanya Aggarwal ,
- Pawan Sasanka Ammanamanchi ,
- Anuoluwapo Aremu ,
- Antoine Bosselut ,
- Khyathi Raghavi Chandu ,
- Miruna-Adriana Clinciu ,
- Dipanjan Das ,
- Kaustubh Dhole ,
- Wanyu Du ,
- Esin Durmus ,
- Ondřej Dušek ,
- Chris Chinenye Emezue ,
- Varun Gangal ,
- Cristina Garbacea ,
- Tatsunori Hashimoto ,
- Yufang Hou ,
- Yacine Jernite ,
- Harsh Jhamtani ,
- Yangfeng Ji ,
- Shailza Jolly ,
- Mihir Kale ,
- Dhruv Kumar ,
- Faisal Ladhak ,
- Aman Madaan ,
- Mounica Maddela ,
- Khyati Mahajan ,
- Saad Mahamood ,
- Bodhisattwa Prasad Majumder ,
- Pedro Henrique Martins ,
- Angelina McMillan-Major ,
- Simon Mille ,
- Emiel van Miltenburg ,
- Moin Nadeem ,
- Shashi Narayan ,
- Vitaly Nikolaev ,
- Andre Niyongabo Rubungo ,
- Salomey Osei ,
- Ankur Parikh ,
- Laura Perez-Beltrachini ,
- Niranjan Ramesh Rao ,
- Vikas Raunak ,
- Juan Diego Rodriguez ,
- Sashank Santhanam ,
- João Sedoc ,
- Thibault Sellam ,
- Samira Shaikh ,
- Anastasia Shimorina ,
- Marco Antonio Sobrevilla Cabezudo ,
- Hendrik Strobelt ,
- Nishant Subramani ,
- Wei Xu ,
- Diyi Yang ,
- Akhila Yerukola ,
- Jiawei Zhou
2021 Natural Language Generation |
Published by Association for Computational Linguistics
We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for the 2021 shared task at the associated GEM Workshop.