Texture Mapping Progressive Meshes
Given an arbitrary mesh, we present a method to construct a progressive mesh (PM) such that all meshes in the PM sequence share a common texture parametrization. Our method considers two important goals simultaneously. It minimizes texture stretch (small texture distances mapped onto large surface distances) to balance sampling rates over all locations and directions on the surface. It also minimizes texture deviation (“slippage” error based on parametric correspondence) to obtain accurate textured mesh approximations. The method begins by partitioning the mesh into charts using planarity and compactness heuristics. It creates a stretch-minimizing parametrization within each chart, and resizes the charts based on the resulting stretch. Next, it simplifies the mesh while respecting the chart boundaries. The parametrization is re-optimized to reduce both stretch and deviation over the whole PM sequence. Finally, the charts are packed into a texture atlas. We demonstrate using such atlases to sample color and normal maps over several models.
Publication Downloads
Texture Mapping Progressive Meshes
September 5, 2002
This demo shows results of parametrizing triangle meshes to support texture mapping at various levels of detail. A texture atlas is constructed that can be re-used on coarse and fine geometries. Examples include the Stanford dragon and Buddha models. Last published: September 5, 2002.
Texture Mapping Progressive Meshes
Given an arbitrary mesh, we present a method to construct a progressive mesh (PM) such that all meshes in the PM sequence share a common texture parametrization. Our method considers two important goals simultaneously. It minimizes texture stretch (small texture distances mapped onto large surface distances) to balance sampling rates over all locations and directions on the surface. It also minimizes texture deviation (“slippage” error based on parametric correspondence) to obtain accurate textured mesh approximations. The method begins by partitioning the mesh into charts using planarity and compactness heuristics. It creates a stretch-minimizing parametrization within each chart, and resizes the charts based on the resulting stretch. Next, it simplifies the mesh while respecting the chart boundaries. The parametrization is re-optimized to reduce both stretch and…