Smoothing Clickthrough Data for Web Search Ranking
- Jianfeng Gao ,
- Wei Yuan ,
- Xiao Li ,
- Kefeng Deng ,
- Jian-Yun Nie
SIGIR |
Incorporating features extracted from clickthrough data (called clickthrough features) has been demonstrated to significantly improve the performance of ranking models for Web search applications. Such benefits, however, are severely limited by the data sparseness problem, i.e., many queries and documents have no or very few clicks. The ranker thus cannot rely strongly on clickthrough features for document ranking. This paper presents two smoothing methods to expand clickthrough data: query clustering via Random Walk on click graphs and a dis-counting method inspired by the Good-Turing estimator. Both methods are evaluated on real-world data in three Web search domains. Experimental results show that the ranking models trained on smoothed clickthrough features consistently outperform those trained on unsmoothed features. This study demonstrates both the importance and the benefits of dealing with the sparseness problem in clickthrough data.
Copyright © 2009 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or [email protected]. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.