Postquench dynamics and prethermalization in a resonant Bose gas

Physical Review A | , Vol 93(03)

Related File

We explore the dynamics of a resonant Bose gas following its quench to a strongly interacting regime near a Feshbach resonance. For such deep quenches, we utilize a self-consistent dynamic field approximation and find that after an initial regime of many-body Rabi-type oscillations between the condensate and finite-momentum quasiparticle pairs, at long times, the gas reaches a prethermalized nonequilibrium steady state. We explore the resulting state through its broad stationary momentum distribution function, that exhibits a power-law high-momentum tail. We study the dynamics and steady-state form of the associated enhanced depletion, quench-rate-dependent excitation energy, Tan’s contact, structure function, and radio-frequency spectroscopy. We find these predictions to be in a qualitative agreement with recent experiments.