Multiscale profiling of protease activity in cancer
- Ava P. Amini ,
- Jesse D. Kirkpatrick ,
- Cathy S. Wang ,
- Alex M. Jaeger ,
- Susan Su ,
- Santiago Naranjo ,
- Qian Zhong ,
- Christina M. Cabana ,
- Tyler Jacks ,
- Sangeeta N. Bhatia
Nature Communications | , Vol 13(1)
Diverse processes in cancer are mediated by enzymes, which most proximally exert their function through their activity. High-fidelity methods to profile enzyme activity are therefore critical to understanding and targeting the pathological roles of enzymes in cancer. Here, we present an integrated set of methods for measuring specific protease activities across scales, and deploy these methods to study treatment response in an autochthonous model of Alk-mutant lung cancer. We leverage multiplexed nanosensors and machine learning to analyze in vivo protease activity dynamics in lung cancer, identifying significant dysregulation that includes enhanced cleavage of a peptide, S1, which rapidly returns to healthy levels with targeted therapy. Through direct on-tissue localization of protease activity, we pinpoint S1 cleavage to the tumor vasculature. To link protease activity to cellular function, we design a high-throughput method to isolate and characterize proteolytically active cells, uncovering a pro-angiogenic phenotype in S1-cleaving cells. These methods provide a framework for functional, multiscale characterization of protease dysregulation in cancer.