Mining Individual Life Pattern Based on Location History

Proceedings of the 10th International Conference on Mobile Data Management (MDM 2009) |

Publication

Abstract— The increasing pervasiveness of location-acquisition technologies (GPS, GSM networks, etc.) enables people to conveniently log their location history into spatial-temporal data, thus giving rise to the necessity as well as opportunity to discovery valuable knowledge from this type of data. In this paper, we propose the novel notion of individual life pattern, which captures individual’s general life style and regularity. Concretely, we propose the life pattern normal form (the LP-normal form) to formally describe which kind of life regularity can be discovered from location history; then we propose the LP-Mine framework to effectively retrieve life patterns from raw individual GPS data. Our definition of life pattern focuses on significant places of individual life and considers diverse properties to combine the significant places. LP-Mine is comprised of two phases: the modelling phase and the mining phase. The modelling phase pre-processes GPS data into an available format as the input of the mining phase. The mining phase applies separate strategies to discover different types of pattern. Finally, we conduct extensive experiments using GPS data collected by volunteers in the real world to verify the effectiveness of the framework.

Publication Downloads

GeoLife GPS Trajectories

August 9, 2012

This is a GPS trajectory dataset collected in (Microsoft Research Asia) GeoLife project by 182 users in a period of over three years (from April 2007 to August 2012). A GPS trajectory of this dataset is represented by a sequence of time-stamped points, each of which contains the information of latitude, longitude and altitude. This dataset contains 17,621 trajectories with a total distance of about 1.2 million kilometers and a total duration of 48,000+ hours. These trajectories were recorded by different GPS loggers and GPS-phones, and have a variety of sampling rates. 91 percent of the trajectories are logged in a dense representation, e.g. every 1~5 seconds or every 5~10 meters per point. This dataset recoded a broad range of users' outdoor movements, including not only life routines like go home and go to work but also some entertainments and sports activities, such as shopping, sightseeing, dining, hiking, and cycling. This trajectory dataset can be used in many research fields, such as mobility pattern mining, user activity recognition, location-based social networks, location privacy, and location recommendation.