Mechanism Design via Differential Privacy
- Frank McSherry ,
- Kunal Talwar
Annual IEEE Symposium on Foundations of Computer Science (FOCS) |
Published by IEEE
We study the role that privacy-preserving algorithms, which prevent the leakage of specific information about participants, can play in the design of mechanisms for strategic agents, which must encourage players to honestly report information. Specifically, we show that the recent notion of differential privacy [15, 14], in addition to its own intrinsic virtue, can ensure that participants have limited effect on the outcome of the mechanism, and as a consequence have limited incentive to lie. More precisely, mechanisms with differential privacy are approximate dominant strategy under arbitrary player utility functions, are automatically resilient to coalitions, and easily allow repeatability. We study several special cases of the unlimited supply auction problem, providing new results for digital goods auctions, attribute auctions, and auctions with arbitrary structural constraints on the prices. As an important prelude to developing a privacy-preserving auction mechanism, we introduce and study a generalization of previous privacy work that accommodates the high sensitivity of the auction setting, where a single participant may dramatically alter the optimal fixed price, and a slight change in the offered price may take the revenue from optimal to zero.
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.http://www.ieee.org/