Lite-HRNet: A Lightweight High-Resolution Network
- Changqian Yu ,
- Bin Xiao ,
- Changxin Gao ,
- Lu Yuan ,
- Lei Zhang ,
- Nong Sang ,
- Jingdong Wang
We find that the heavily-used pointwise (1×1) convolutions in shuffle blocks become the computational bottleneck. We introduce a lightweight unit, conditional channel weighting, to replace costly pointwise (1×1) convolutions in shuffle blocks. The complexity of channel weighting is linear w.r.t the number of channels and lower than the quadratic time complexity for pointwise convolutions. Our solution learns the weights from all the channels and over multiple resolutions that are readily available in the parallel branches in HRNet. It uses the weights as the bridge to exchange information across channels and resolutions, compensating the role played by the pointwise (1×1) convolution. Lite-HRNet demonstrates superior results on human pose estimation over popular lightweight networks. Moreover, Lite-HRNet can be easily applied to semantic segmentation task in the same lightweight manner. The code and models are publicly available on GitHub (opens in new tab).