Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation
- Ailing Zeng ,
- Xiao Sun ,
- Lei Yang ,
- Nanxuan Zhao ,
- Minhao Liu ,
- Qiang Xu
Various deep learning techniques have been proposed to solve the single-view 2D-to-3D pose estimation problem. While the average prediction accuracy has been improved significantly over the years, the performance on hard poses with depth ambiguity, self-occlusion, and complex or rare poses is still far from satisfactory. In this work, we target these hard poses and present a novel skeletal GNN learning solution. To be specific, we propose a hop-aware hierarchical channel-squeezing fusion layer to effectively extract relevant information from neighboring nodes while suppressing undesired noises in GNN learning. In addition, we propose a temporal-aware dynamic graph construction procedure that is robust and effective for 3D pose estimation. Experimental results on the Human3.6M dataset show that our solution achieves 10.3\% average prediction accuracy improvement and greatly improves on hard poses over state-of-the-art techniques. We further apply the proposed technique on the skeleton-based action recognition task and also achieve state-of-the-art performance. Our code is available on GitHub (opens in new tab).