Indoor Localization Without the Pain
- Krishna Chintalapudi ,
- Anand Padmanabha Iyer ,
- Venkat Padmanabhan
Mobicom |
Published by Association for Computing Machinery, Inc.
While WiFi-based indoor localization is attractive, the need for a significant degree of pre-deployment effort is a key challenge. In this paper, we ask the question: “Can we perform indoor localization with no pre-deployment effort?” Our setting is an indoor space, such as an office building or a mall, with WiFi coverage but where we do not assume knowledge of the physical layout, including the placement of the APs. Users carrying WiFi-enabled devices such as smartphones traverse this space in normal course. The mobile devices record Received Signal Strength (RSS) measurements corresponding to APs in their view at various (unknown) locations and report these to a localization server. Occasionally, a mobile device will also obtain and report a location fix, say by obtaining a GPS lock at the entrance or near a window. The centerpiece of our work is the EZ Localization algorithm, which runs on the localization server. The key intuition is that all of the observations reported to the server, even the many from unknown locations, are constrained by the physics of wireless propagation. EZ models these constraints and then uses a genetic algorithm to solve them. The results from our deployment in two different buildings are promising. Despite the absence of any explicit pre-deployment calibration, EZ yields a median localization error of 2m and 7m, respectively, in a small building and a large building, which is only somewhat worse than the 0.7m and 4m yielded by the best performing but calibration-intensive Horus scheme from prior work.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or [email protected]. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.