Fast Byte-Granularity Software Fault Isolation
- Miguel Castro ,
- Jean-Philippe Martin ,
- Marcus Peinado ,
- Periklis Akritidis ,
- Austin Donnelly ,
- Manuel Costa ,
- Paul Barham ,
- Richard Black
ACM Symposium on Operating Systems Principles (SOSP) |
Published by Association for Computing Machinery, Inc.
Bugs in kernel extensions remain one of the main causes of poor operating system reliability despite proposed techniques that isolate extensions in separate protection domains to contain faults. We believe that previous fault isolation techniques are not widely used because they cannot isolate existing kernel extensions with low overhead on standard hardware. This is a hard problem because these extensions communicate with the kernel using a complex interface and they communicate frequently. We present BGI (Byte-Granularity Isolation), a new software fault isolation technique that addresses this problem. BGI uses efficient byte-granularity memory protection to isolate kernel extensions in separate protection domains that share the same address space. BGI ensures type safety for kernel objects and it can detect common types of errors inside domains. Our results show that BGI is practical: it can isolate Windows drivers without requiring changes to the source code and it introduces a CPU overhead between 0 and 16%. BGI can also find bugs during driver testing. We found 28 new bugs in widely used Windows drivers.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or [email protected]. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.