Evaluation of synthetic and experimental training data in supervised machine learning applied to charge state detection of quantum dots
- Jana Darulova ,
- Matthias Troyer ,
- Maja C. Cassidy
Automated tuning of gate-defined quantum dots is a requirement for large scale semiconductor based qubit initialisation. An essential step of these tuning procedures is charge state detection based on charge stability diagrams. Using supervised machine learning to perform this task requires a large dataset for models to train on. In order to avoid hand labelling experimental data, synthetic data has been explored as an alternative. While providing a significant increase in the size of the training dataset compared to using experimental data, using synthetic data means that classifiers are trained on data sourced from a different distribution than the experimental data that is part of the tuning process. Here we evaluate the prediction accuracy of a range of machine learning models trained on simulated and experimental data and their ability to generalise to experimental charge stability diagrams in two dimensional electron gas and nanowire devices. We find that classifiers perform best on either purely experimental or a combination of synthetic and experimental training data, and that adding common experimental noise signatures to the synthetic data does not dramatically improve the classification accuracy. These results suggest that experimental training data as well as realistic quantum dot simulations and noise models are essential in charge state detection using supervised machine learning.