End-to-End NLP Knowledge Graph Construction

  • Ishani Mondal ,
  • Yufang Hou ,
  • Charles Jochim

ACL-IJCNLP 2021 |

This paper studies the end-to-end construction of an NLP Knowledge Graph (KG) from scientific papers. We focus on extracting four types of relations: evaluatedOn between tasks and datasets, evaluatedBy between tasks and evaluation metrics, as well as coreferent and related relations between the same type of entities. For instance, F1-score is coreferent with F-measure. We introduce novel methods for each of these relation types and apply our final framework (SciNLP-KG) to 30,000 NLP papers from ACL Anthology to build a large-scale KG, which can facilitate automatically constructing scientific leaderboards for the NLP community. The results of our experiments indicate that the resulting KG contains high-quality information.