Constructions of Quantum Convolutional Codes
- Markus Grassl ,
- Martin Roetteler
Proceedings IEEE International Symposium on Information Theory (ISIT'07) |
We address the problems of constructing quantum convolutional codes (QCCs) and of encoding them. The first construction is a CSS-type construction which allows us to find QCCs of rate 2/4. The second construction yields a quantum convolutional code by applying a product code construction to an arbitrary classical convolutional code and an arbitrary quantum block code. We show that the resulting codes have highly structured and efficient encoders. Furthermore, we show that the resulting quantum circuits have finite depth, independent of the lengths of the input stream, and show that this depth is polynomial in the degree and frame size of the code.