Cloud-LoRa: Enabling Cloud Radio Access LoRa Networks Using Reinforcement Learning Based Bandwidth-Adaptive Compression

  • Muhammad Osama Shahid ,
  • Daniel Koch ,
  • Jayaram Raghuram ,
  • Bhuvana Krishnaswamy ,
  • ,
  • Suman Banerjee

NSDI |

Organized by Usenix

The Cloud Radio Access Network (CRAN) architecture has been proposed as a way of addressing the network throughput and scalability challenges of large-scale LoRa networks. CRANs can improve network throughput by coherently combining signals, and scale to multiple channels by implementing the receivers in the cloud. However, in remote LoRa deployments, a CRAN’s demand for high-backhaul bandwidths can be challenging to meet. Therefore, bandwidth-aware compression of LoRa samples is needed to reap the benefits of CRANs. We introduce Cloud-LoRa, the first practical CRAN for LoRa, that can detect sub-noise LoRa signals and perform bandwidth-adaptive compression. To the best of our knowledge, this is the first demonstration of CRAN for LoRa operating in real-time. We deploy Cloud-LoRa in an agricultural field over multiple days with USRP as the gateway. A cellular backhaul hotspot is then used to stream the compressed samples to a Microsoft Azure server. We demonstrate SNR gains of over 6 dB using joint multi-gateway decoding and over 2x throughput improvement using state-of-the-art receivers, enabled by CRAN in real-world deployments.