A Static Analysis Framework for Data Science Notebooks
- Pavle Subotić ,
- Lazar Milikić ,
- Milan Stojić
2022 International Conference on Software Engineering |
Notebooks provide an interactive environment for programmers to develop code, analyse data and inject interleaved visualizations in a single environment. Despite their flexibility, a major pitfall that data scientists encounter is unexpected behaviour caused by the unique out-of-order execution model of notebooks. As a result, data scientists face various challenges ranging from notebook correctness, reproducibility and cleaning. In this paper, we propose a framework that performs static analysis on notebooks, incorporating their unique execution semantics. Our framework is general in the sense that it accommodate for a wide range of analyses, useful for various notebook use cases. We have instantiated our framework on a diverse set of analyses and have evaluated them on 2211 real world notebooks. Our evaluation demonstrates that the vast majority (98.7%) of notebooks can be analysed in less than a second, well within the time frame required by interactive notebook clients