A Segmental CRF Approach to Large Vocabulary Continuous Speech Recognition
- Geoffrey Zweig ,
- Patrick Nguyen
ASRU |
Published by IEEE
This paper proposes a segmental conditional random field framework for large vocabulary continuous speech recognition. Fundamental to this approach is the use of acoustic detectors as the basic input, and the automatic construction of a versatile set of segment-level features. The detector streams operate at multiple time scales (frame, phone, multi-phone, syllable or word) and are combined at the word level in the CRF training and decoding processes. A key aspect of our approach is that features are defined at the word level, and are naturally geared to explain long span phenomena such as formant trajectories, duration, and syllable stress patterns. Generalization to unseen words is possible through the use of decomposable consistency features [1], [2], and our framework allows for the joint or separate discriminative training of the acoustic and language models. An initial evaluation of this framework with voice search data from the Bing Mobile (BM) application results in a 2% absolute improvement over an HMM baseline.
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.http://www.ieee.org/