A Randomized Scheduler with Probabilistic Guarantees of Finding Bugs
- Madan Musuvathi ,
- Sebastian Burckhardt ,
- Pravesh Kothari
Proceedings of the Fifteenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2010) |
Published by Association for Computing Machinery, Inc.
This paper presents a randomized scheduler for finding concurrency bugs. Like current stress-testing methods, it repeatedly runs a given test program with supplied inputs. However, it improves on stress-testing by finding buggy schedules more effectively and by quantifying the probability of missing concurrency bugs. Key to its design is the characterization of the depth of a concurrency bug as the minimum number of scheduling constraints required to find it. In a single run of a program with n threads and k steps, our scheduler detects a concurrency bug of depth d with probability at least 1/nkd-1. We hypothesize that in practice, many concurrency bugs (including well-known types such as ordering errors, atomicity violations, and deadlocks) have small bug-depths, and we confirm the efficiency of our schedule randomization by detecting previously unknown and known concurrency bugs in several production-scale concurrent programs.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or [email protected]. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.