A Bayesian Mixture Model for Multi-view Face Alignment
- Yi Zhou ,
- Xiaoou Tang ,
- Harry Shum ,
- Wei Zhang
Published by Association for Computing Machinery, Inc.
For multi-view face alignment, we have to deal with two major problems: 1. the problem of multi-modality caused by diverse shape variation when the view changes dramatically; 2. the varying number of feature points caused by self-occlusion. Previous works have used nonlinear models or view based methods for multi-view face alignment. However, they either assume all feature points are visible or apply a set of discrete models separately without a uniform criterion. In this paper, we propose a unified framework to solve the problem of multi-view face alignment, in which both the multi-modality and variable feature points are modeled by a Bayesian mixture model. We first develop a mixture model to describe the shape distribution and the feature point visibility, and then use an efficient EM algorithm to estimate the model parameters and the regularized shape. We use a set of experiments on several datasets to demonstrate the improvement of our method over traditional methods.
Copyright © 2004 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or [email protected]. The definitive version of this paper can be found at ACM's Digital Library -http://www.acm.org/dl/.