Deep Learning for Machine Reading Comprehension

Établi : September 1, 2016

The goal of this project is to teach a computer to read and answer general questions pertaining to a document. We recently released a large scale MRC dataset, MS MARCO (opens in new tab).  We developed a ReasoNet  (opens in new tab) model to mimic the inference process of human readers. With a question in mind, ReasoNets read a document repeatedly, each time focusing on different parts of the document until a satisfying answer is found or formed. The extension of ReasoNet (ReasoNet-Memory (opens in new tab)) incorporates the shared memory component in the model has been applied on Knowledge Graph Completition Task. We also develop a a two-stage synthesis network (SynNet) (opens in new tab)  for transfer learning in machine reading comprehension. Our latest MRC model, called SAN (opens in new tab) (Stochastic Answer Net), simulates multi-step reasoning using stochastic prediction dropout, achieving state-of-the-art on SQuAD.

 

Personne

Portrait de Weizhu Chen

Weizhu Chen

Vice President

Portrait de Jianfeng Gao

Jianfeng Gao

Distinguished Scientist & Vice President

Portrait de Xiaodong Liu

Xiaodong Liu

Senior Principal Researcher

Portrait de Kevin Duh

Kevin Duh

Assistant Research Professor

Johns Hopkins University